
Citation: Barbosa Machado, M.V.;

Delshad, M.; Carrasco Jaim, O.A.;

Okuno, R.; Sepehrnoori, K. A Strategy

for Enhanced Carbon Storage: A

Hybrid CO2 and Aqueous Formate

Solution Injection to Control

Buoyancy and Reduce Risk. Energies

2024, 17, 2680. https://doi.org/

10.3390/en17112680

Academic Editors: Bin Pan,

Xiaopu Wang, Yujie Yuan, Yujing Du

and Naser Golsanami

Received: 19 April 2024

Revised: 25 May 2024

Accepted: 29 May 2024

Published: 31 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Strategy for Enhanced Carbon Storage: A Hybrid CO2 and
Aqueous Formate Solution Injection to Control Buoyancy and
Reduce Risk
Marcos Vitor Barbosa Machado 1,* , Mojdeh Delshad 2 , Omar Ali Carrasco Jaim 2, Ryosuke Okuno 2

and Kamy Sepehrnoori 2,*

1 Petrobras, Rio de Janeiro 20231-030, Brazil
2 Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin,

Austin, TX 78712, USA; delshad@mail.utexas.edu (M.D.); oacarrasco@utexas.edu (O.A.C.J.);
okuno@austin.utexas.edu (R.O.)

* Correspondence: marcosbarbosa@petrobras.com.br (M.V.B.M.); kamys@mail.utexas.edu (K.S.)

Abstract: Conventional Carbon Capture and Storage (CCS) operations use the direct injection of
CO2 in a gaseous phase from the surface as a carbon carrier. Due to CO2 properties under reservoir
conditions with lower density and viscosity than in situ brine, CO2 flux is mainly gravity-dominated.
CO2 moves toward the top and accumulates below the top seal, thus reinforcing the risk of possible
leakage to the surface through unexpected hydraulic paths (e.g., reactivated faults, fractures, and
abandoned wells) or in sites without an effective sealing caprock. Considering the risks, the potential
benefits of the interplay between CO2 and an aqueous solution of formate ions (HCOO¯) were
evaluated when combined to control CO2 gravity segregation in porous media. Three combined
strategies were evaluated and compared with those where either pure CO2 or a formate solution was
injected. The first strategy consisted of a pre-flush of formate solution followed by continuous CO2

injection, and it was not effective in controlling the vertical propagation of the CO2 plume. However,
the injection of a formate solution slug in a continuous or alternated way, simultaneously with the
CO2 continuous injection, was effective in slowing down the vertical migration of the CO2 plume
and keeping it permanently stationary deeper than the surface depth.

Keywords: CCS; formate solution; buoyancy-driven flux; saline aquifers

1. Introduction

The scenarios analyzed by international entities, such as the International Energy
Agency (IEA), underscore the intricate nature of the actions required to achieve the estab-
lished goals for reducing Greenhouse Gas emissions in the forthcoming decades while
simultaneously transforming energy generation sources. The “World Energy Outlook 2022”
report [1] emphasizes that a synergistic deployment of multiple technologies and energy
sources will play a pivotal role in providing sustainable energy resources for the planet.
Among the various options for curtailing CO2 emissions, Carbon Capture and Storage
(CCS) arises as a technology with substantial potential to mitigate CO2 emissions in a
probable scenario characterized by ongoing fossil fuel utilization in the future.

A CCS project encompasses the capture of CO2 from industries with high emission
rates and its subsequent injection into geological formations, such as aquifers and depleted
hydrocarbon reservoirs. One of the primary challenges associated with long-term and large-
scale CO2 storage in geological formations pertains to ensuring the safety and reliability of
storage. To address this challenge, diverse trapping mechanisms within porous media can
be studied [2–5]. For instance, during the initial phase of a CO2 injection, the migration of
free CO2 is controlled by structural and stratigraphic trapping facilitated by the caprock,
which is known as the primary trapping mechanism. Over the medium and long term,
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a portion of the mobile CO2 will undergo dissolution in water through a process known
as solubility trapping. This phenomenon is particularly pronounced in low-salinity brine
under conditions of high pressure and low temperature [6,7]. The dissolution of CO2 into
brine is facilitated by molecular diffusion and brine solubility. As CO2 dissolves into saline
water, the resulting CO2(aq)-dissolved brine becomes denser. This density contrast between
the CO2(aq)-dissolved brine and the pure brine causes the denser CO2(aq) to sink while
the pure brine rises [8,9]. The resulting density-driven convection accelerates the rate of
CO2 mass transfer, promotes further dissolution, and enhances the stability and safety of
geological storage [10–12].

In addition to solubility trapping, changes in saturation induced by the upward move-
ment of the CO2 plume can result in additional trapping as a residual phase, attributable to
relative permeability and capillary hysteresis [13]. Additionally, in specific cases, certain
CO2 molecules can be trapped in the form of minerals, influenced by the pH of the brine
and the mineralogy of the rock [14]. These secondary trapping mechanisms bolster stor-
age security by immobilizing buoyant CO2 within the pore space or converting it into a
non-free phase.

According to Bachu [13], the contribution of secondary trapping mechanisms is almost
negligible during the injection phase. Consequently, during this stage, the caprock assumes
a critical role in ensuring the security of the CCS operation, as the buoyancy of CO2 has
the potential to induce its migration toward the surface or seafloor in the case of offshore
storage sites. In the Frio CO2 field demonstration project conducted in the U.S. [15], CO2
was injected in a deeper zone below several well-known shale seals. However, certain
authors [16] are currently reevaluating the necessity of a caprock to control the upward
movement of the CO2 plume, given the absence of prescriptive regulations pertaining
to geologic seals. Furthermore, there is ongoing consideration of a composite confining
system comprising discontinuous barriers that create prolonged and convoluted pathways
to attenuate the saturation of mobile CO2.

Where the caprock cannot be effective, additional control over the CO2 buoyancy
is desired to support the discontinuous geologic barriers. Some authors have worked
with aqueous solutions based on formic acid [17] to enhance the CO2 solubility in brine
or on formate ions [18,19] to enhance the pore-space utilization in carbon storage while
avoiding various issues with CO2 storage. Additional benefits of the formate solution
have been found for carbonate rocks concerning the wettability alteration to enhance oil
recovery [18,20–22].

A formate ion (HCOO¯) is the simplest carboxylate and the conjugate base of formic
acid (HCOOH). Both compounds can be used as precursors for additional chemicals in
energy-related applications, such as hydrogen storage and carbon carrier materials. The
estimated global market for formic acid is 1,300,000 tons by 2035 [23] as a result of its
growing utilization in these areas.

Currently, formate ion production is based on thermochemical processes in which
syngas and steam generation are needed, resulting in energy-intensive reactions with
carbon dioxide emissions [24]. Alternatively, the electrochemical reduction in CO2 (ECR-
CO2) is a technology with the potential to produce formate species (including formic acid)
under ambient conditions utilizing renewable energy and contributing to atmospheric
carbon removal [24,25].

Different reported techno-economic analyses (TEA) have stated the feasibility of
formic acid production by electrochemical reduction in CO2, providing a reaction en-
ergy consumption between 4.5 and 4.7 kWh/kg HCOOH [26,27] for the best scenario
using 0.95 kg CO2/kg HCOOH and 0.60 kg H2O/kg HCOOH consumption rates [26].
Under these conditions, the overall production cost is estimated to be US $0.46–0.75/kg
HCOOH [26,27], which is quite competitive since the current market price is US $0.68–1/kg
HCOOH [25,26].

Although no commercial CO2 electrolyzer is available, great progress has been made
to successfully develop industrial-scale technologies, achieving a current TRL of 6. Exper-
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imental work has demonstrated a reaction energy consumption of around 5.5 kWh/kg
HCOOH [28] and stable long-term performance for 1000 h, which is a promising scenario
for large-scale formic acid production by electrochemical reduction in CO2.

In this study, the aqueous solution of formate ions, referred to as a formate solution,
combined with CO2 (injected as a gas from the surface) was evaluated to support the gravity
control of the plume in porous media, unlike Oyenowo et al.’s work [29], who evaluated
only a formate injection as a carbon carrier. The following three combined strategies were
tested: (1) a pre-flush of the formate solution slug preceding the continuous CO2 injection;
(2) injecting the formate solution slug in a continuous or alternated way with CO2; and
(3) injecting formate solution simultaneously with CO2 using a dual completion well similar
to that in simultaneous water alternating gas injection projects [30]. All our simulations
considered the mentioned secondary trapping mechanisms in two geological models, a
synthetic one and an actual aquifer in Brazil, with little evidence of effective caprock. The
main assumptions in this paper include the following:

• No geomechanical or caprock modeling;
• A pure CO2 stream is injected at a typical commercial rate;
• No consideration of surface facility modeling. Focus on the subsurface flow and the

impact of formate on CO2 fate and transport in a saline aquifer.

2. Modeling Geochemical Reactions

In the simulation of CO2 injection for CCS, both in the synthetic model and in the real
cases to be discussed in the subsequent section, the numerical simulation was performed
using CMG-GEM [31]. This simulator was used considering the following features:

• The diffusion coefficient (D) for super-critical CO2 in brine equals 3.65 × 10−5 cm2/s,
according to Ahmadi et al. [32]. This coefficient is applied to compute the effective
CO2 diffusion (Deff) considering a porous medium with a tortuosity τ.

De f f =
D
τ

(1)

• The solubility of CO2 in brine can be estimated using the method proposed by Li and
Nghiem [33], which is based on Henry’s law. This model calculates Henry’s constant
based on Equation (2), which is a function of pressure and temperature. However, the
influence of salt on the solubility of CO2 in the aqueous phase is taken into account
through the use of a salting-out coefficient [34].

ln(Hi) = ln(H∗
i ) +

vi
RT

(p − p∗) (2)

where
Hi: Henry’s constant at current pressure (p) and temperature (T);
H∗

i : Henry’s constant at reference pressure (p*) and temperature (T);
vi: partial molar volume at infinite dilution;
R: universal gas constant;
i: species dissolved in water (CO2 in this work).

• Water acid reactions for bicarbonate and carbonate ion generation using kinetic pa-
rameters from the PHREEQC database [35,36]:

OH− + H+ = H2O (3)

CO2 + H2O = H+ + HCO3
− (4)

CO3
2− + H+ = HCO3

− (5)
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• Reactions between a formate ion and other species in brine using kinetic parameters
from the MINTEQ database [37]:

H+ + HCOO− = HCO2H (6)

Ca2+ + HCOO− = Ca(HCO2)2 (7)

Mg2+ + HCOO− = Mg(HCO2)2 (8)

• Reactions with primary minerals using kinetic parameters from PHREEQC for the
Transition-State-Theory (TST)-derived rate laws:

- In the synthetic aquifer model:

Calcite [CaCO3] + H+ = Ca2+ + HCO3
− (9)

- In the real aquifer model:

Quartz [SiO2] = SiO2 (aq) (10)

K-feldspar [KAlSi3O8] + 4 H+ = 3 SiO2 (aq) + Al3+ + K+ + 2 H2O (11)

Albite [NaAlSi3O8] + 4 H+ = 3 SiO2 (aq) + Al3+ + Na+ + 2 H2O (12)

• Permeability alteration due to mineral precipitation or dissolution was computed by
applying the Kozeny–Carman equation with an exponent value of 3, as Zeidouni
et al. [38] recommended as follows:

kk = kn/r f , (13)

and

r f = r f n

(
φn

φk

)3( 1 − φk
1 − φn

)
,
2

(14)

where the resistance factor rf is modeled by the Kozeny–Carman equation or the
power law relationship; kn and kk refer to permeability at previous (n) and current (k)
timesteps, respectively. The porosity, φ, in (14) is calculated as follows:

φ =
[
1 + c f (p − p∗)

][
φ∗ − ∑n

j=1

(
Nj

ρm,j
−

N0
j

ρm,j

)]
, (15)

where:
φ* is the reference porosity without mineral precipitation/dissolution;
Nj is the total moles of mineral j per bulk volume at the current time;
N0

j is the total moles of mineral j per bulk volume at the initial time;
ρm,j is the mineral molar density;
cf is the rock compressibility;
p* is the reference pressure.

• The aqueous formate solution used in this study considered the formulation of Wang
et al. [21], with a formate concentration of 30 wt% in brine, with a total salinity of
468,333 ppm (Na+: 159,236 ppm; Cl−: 9097 ppm; HCOO−: 300,000 ppm) and pH
adjusted to 7. The resulting density of this formate solution is around 2300 kg/m3

with a viscosity of about 3 cP at the real average reservoir pressure and temperature
conditions, as will be detailed in the following sections.
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3. Case Study 1: Synthetic Model
3.1. Geological Model

To gain a deeper understanding of the impact of a formate solution in conjunction
with a CO2 injection, a 2D synthetic model of a saline aquifer was built. The model was
designed to have homogeneous petrophysical properties. A vertical injection well was
placed at the edge of the model, with perforations in the three bottom layers. Figure 1
illustrates the dimensions of the model, which was discretized into a grid consisting of
100 × 100 × 20 gridblocks, each with a volume of 10 × 10 × 5 m3. This model discretiza-
tion was validated and has been utilized for various applications related to reactive flow
transport, as documented in the available literature [39–41].
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Figure 1. Synthetic 2D homogeneous model of a saline aquifer.

Other properties of the synthetic model are summarized in Table 1, obtained from
Oyenowo et al. [29].

Table 1. Summary of the main petrophysical and fluid properties—synthetic model.

Total model pore volume 180,000 m3

Average horizontal permeability 100 mD
Ratio of vertical/horizontal permeabilities 0.10
Average porosity 0.18
Initial pressure @ datum 8.963 MPa
Temperature
Initial pH

41 ◦C
7.3

CO2 injection rate
Aqueous formate solution injection rate

1.0 metric tons/d
0.65 m3/d

Relative permeability curves
Capillary pressure curves

Figure 2
Figure 2

The assumed synthetic relative permeability and capillary pressure curves [39] are
represented in Figure 2. The maximum trapped gas saturation (Sgt) is assumed to be 0.4
in the Carlson hysteresis model [42], corresponding to the Land’s constant (C) [43] of 2,
according to Equation (16):

Sgt =
Sg max

1 + CSg max
(16)

where Sg max is the maximum gas saturation.
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Figure 2. On the left: drainage water–CO2 relative permeability curves (the Carlson hysteresis model
generates the imbibition curves). On the right: water–CO2 capillary pressure curves (in blue: drainage
curve; in red: imbibition curve)—synthetic model.

The synthetic water composition assigned for this case is represented in Table 2 [39].

Table 2. Ionic composition of formation water.

Ions Concentration (ppm)

H+ 1.4872 × 10−5

Ca2+ 11,307
Na+ 17,763
Cl−

HCO3
−

39,604
425

3.2. Results

Oyenowo et al. [29] performed numerical simulations injecting an aqueous formate
solution into an aquifer and an oil reservoir. They showed no upward buoyancy-driven
flux when they used the formate solution as a single carbon carrier. This result inspired us
to evaluate the combination of formate and CO2 injections to enhance the amount of carbon
stored and to control the stability of the displacement process and buoyant forces due to
the higher density and viscosity of the formate solution. Firstly, this approach was tested in
the synthetic model and also coupled with the abovementioned geochemical reactions to
capture trapping mechanisms such as solubility, including ionic trapping (bicarbonate and
carbonate ion generation), residual, and mineral trapping.

Figure 3a shows the CO2 injection without consideration of all the aforementioned
trapping mechanisms, highlighting the CO2 rising as a mobile super-critical CO2 phase
trapped by the caprock. In Figure 3b, the trapping mechanisms were included, and the
CO2 plume was simulated to spread along the aquifer thickness, less dependent on the
structural trapping. However, when formate solution was injected (30 wt%) simultaneously
with the CO2 in an equal volume in the aquifer conditions, the CO2 plume did not reach the
caprock, reducing the importance of structural trapping in the storage projects (Figure 3c).
This observation reinforced our motivation to test the co-injection of CO2 and formate to
minimize the risk associated with the caprock’s effectiveness as a barrier to the CO2 plume.
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Figure 3. (a) CO2 saturation plume after 20 years of injection considering only structural trapping,
(b) including all CO2 trapping mechanisms, and (c) co-injection with aqueous formate solution
through a dual completion well.

A secondary effect observed by this simulation is the buffer solution with a basic pH
mainly around the well when the formate solution is injected in a calcite-rich matrix, as
shown in Figure 4A. Regarding this effect, Wang et al. [21] showed that either brine with
calcite or a 20 wt% formate solution with calcite reached the same equilibrium pH between
8.5 and 9 from their static bottle tests and corefloods with Texas Cream limestone cores.
Without calcite, the formate solution in brine showed no reactivity and no change from the
initial pH, which was 7.0. Figure 4A (left) shows a zone with a pH greater than 9, but such
large pH values were not observed experimentally in [18,21].
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20 years of (A) aqueous formate solution injection and (B) formate solution and CO2 co-injection.

Generally, calcite precipitation tends to be induced in a basic pH environment if
carbonate ions are in contact with calcium ions in the resident brine or generated from
the dissolution of carbonate minerals. To emulate this, a carbonate matrix with 63% of the
volume of calcite [44] was assumed to see the impact of the pH changes on the reaction
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(Equation (9)). Other minerals present in the rock matrix are mainly quartz, kaolinite, and
oligoclase. Our simulation study could reproduce the following mechanism:

Increased pH when a formate solution is injected into a carbonate rock (orange curve
in Figure 5), as experimentally observed by [18,21]. This is the sodium formate solution
injection with no CO2 injection. The small precipitation of calcite comes from formate-
induced calcite dissolution and then re-precipitation because bicarbonate ions from the
resident brine (Table 2) cause calcite to precipitate in Figure 4A (right) upon the pH increase
in Figure 4A (left). Note that the large pH values in Figure 4A are numerically simulated
under the simulation conditions; therefore, the simulation results in Figure 4 must be
interpreted qualitatively;
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Figure 5. pH evolution (average over the entire reservoir pore volume) when CO2 (in red), formate
solution (in orange), or CO2 + formate solution (in blue) are injected into carbonate rock. The green
curve corresponds to when a nonreactive matrix is considered for the formate solution case.

Nearly constant pH when a formate solution is injected into a rock without calcite
(green curve in Figure 5), as reported by Wang [21];

Acidification occurs when CO2 is injected into a carbonate matrix (red curve in
Figure 5), as expected by the generation of carbonic acid;

Less intense acidification occurs when a formate solution is injected simultaneously
with the CO2 (blue curve in Figure 5). In this case, part of the CO2 injected is converted
to bicarbonate induced by the buffer solution with an alkaline pH created by the formate
injection, concentrated on the bottom of Figure 4B (left). Meanwhile, some of the CO2 rises
(Figure 3c) and creates a lower pH zone (blue zone in Figure 4B on the left), inducing more
significant calcite dissolution (red area in Figure 4B on the right) than when only formate is
injected. In the same Figure, calcite re-precipitation is observed on the bottom induced by
the buffer solution.

In summary, if only CO2 is injected, an acidic pH is expected to promote the calcite
to dissolve (red curves in Figure 6) and increase the initial calcium concentration in brine.
As shown in Figure 6 (orange curve on the top), the pH tends to increase if an aqueous
solution of sodium formate is injected without adjusting the pH, for example, by formic
acid [19,29]. If properly designed for a given formation and its operating conditions, an in-
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jection of aqueous formate solution can be used to control the CO2 mineralization trapping
mechanism (the orange curve on the bottom) besides controlling the CO2 plume rise.
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4. Case Study 2: Real Aquifer
4.1. Geological Model

The final evaluation was conducted in a model of an actual sandstone aquifer built
with seismic and well data from three wells drilled in that area. The aquifer covers an
onshore and offshore area in the Campos basin, Rio de Janeiro state, Brazil (red square
in Figure 7). The sand grains are composed of quartz and feldspars, with a significant
presence of granitic lithoclasts (a mechanically formed and deposited fragment of rock
derived from an older one). The total porosity is 25%, and its origin is mainly secondary,
generated by matrix contraction, grain dissolution, or grain fracturing, resulting in an
average permeability of 1.5 D. Its rock mineralogy [45], in volumetric fraction, is composed
of the following main minerals: quartz (29.5%), K-feldspar (8%), and plagioclase (5%),
assumed here as albite.

The full reservoir model encompasses a pore volume of over 150 billion m³, but a sector
model with a pore volume of about 30 billion m3 was considered in this work (Figure 8).
The gridblock size is 100 × 100 m2 horizontally and 5 m thick. A grid refinement was
performed around the injector to reduce the gridblock size from 100 m to 25 m using the
workflow proposed by Machado et al. [39].

The CO2 injection was evaluated over twenty years (2025–2045) with a constant rate
of 1.5 million metric tons/yr through a centrally located vertical injector in the bottom
layers. In this selected area, there is no evidence of an existing caprock, only a set of
discontinuous shale lenses fitting the composite confining system classification, according
to the concept introduced by Bump et al. [16]. Therefore, they can work as barriers to the
CO2 plume. However, due to the geologic uncertainty of the occurrence and distribution of
the dispersed barriers, it would be desirable to count on an additional control to prevent
CO2 buoyancy on the surface or seafloor. In this context, the formate solution is anticipated
to have a significant impact, which justifies the selection of this particular geological model
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for conducting the investigation. This model was chosen due to its suitability for examining
and understanding the specific effects and implications associated with using a formate
solution within the given scenario.
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Other properties of the real case model are summarized in Table 3.

Table 3. Ionic composition of formation water [46].

Ions Concentration (ppm)

H+ 1.4767 × 10−4

Ca2+ 998
Mg2+ 627
Na+ 27,094
Cl−

HCO3
−

42,685
1337
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4.2. Results

Based on the potential benefits of the co-injection of a formate solution with CO2 using
the synthetic model, application in an actual aquifer model is discussed in this section. Due
to the larger amounts of CO2 to be injected, we need to optimize how and the quantity of
the formate solution will be injected. Therefore, the following steps were proposed:

1. Start injecting the same volume of CO2 and formate solution. In this case, 1.5 million
metric tons/yr of CO2 was assumed based on the field project design;

2. Evaluate different CO2/formate volumetric ratios (R);
3. With the best R-value, test different hybrid strategies: (i) pre-flush of formate preced-

ing the CO2 injection, called “pre-flush”; (ii) simultaneous and continuous injections
of both fluids, called “co-injection”; (iii) continuous CO2 injection and alternating
and simultaneous formate injection with 6-month slugs, called “alternated.” Figure 9
illustrates the different injection strategies.
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Figure 9. Hybrid CO2 and formate injection strategies.

To make a fair comparison, the volume of the formate solution used in the simulations
is the same in all cases over 20 years of injections (2025–2045), and it corresponds to
approximately 3.6 million tons (i.e., 1.08 million tons of formate ions, not formate salts),
which is a considerable amount and could raise some concerns about the economic viability
of this process. However, as mentioned in the Introduction section, formate species can also
be generated by the electrochemical reduction in CO2 [47], contributing to carbon emission
reduction goals. Therefore, the combination of CO2 and formate solution injections brings
synergistic benefits: it makes the storage safer by providing buoyancy control and, at
the same time, enhances the amount of carbon stored since the gravity-controlling agent
(formate solution) can be generated from CO2 electrochemical reduction on the surface.

In this work, R values of more than 1 were considered due to economic viability
concerns. This is because producing a larger volume of formate solution would be required
compared to the CO2 volume. Additionally, the formate solution exhibits higher viscosity
than CO2, with an average viscosity of 3 cP compared to 0.05 cP for CO2 at downhole
conditions. Consequently, the injection rate of formate would need to be limited after
the second year of injections when testing an R = 0.5, as illustrated in Figure 10. This
limitation is necessary to ensure that the pressure during operation remains below the
fracture gradient, which establishes a maximum bottomhole pressure of 30,000 kPa for
this specific aquifer. Hence, operating with an R-value less than 1 could pose operational
challenges, particularly for cases with low- and mid-permeability, where issues related to
injectivity are more likely to arise.
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Figure 10. Bottomhole pressure of the injector well over 5 years for R = 0.5 considering the alternated
injection strategy.

After following the optimization steps (a) and (b), the best R-value (CO2/formate
ratio) to control the plume rise was when the volumetric amounts of CO2 and the formate
solution were the same, e.g., R = 1.0. Figure 11 compares three R values considering
the alternated CO2/formate injection strategy. The results indicate that the case with
R = 1 poses a lower risk compared to the other case. When R = 5, representing a CO2
injected volume five times that of the formate volume, the CO2 plume reaches the surface
after 20 years of injections (2045).
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Figure 11. Profiles of CO2 saturation along the well for different CO2/formate ratios, R values at 2045
considering the alternated injection strategy.

Figure 12 presents a comparison of different injection strategies with R = 1. The first
row of the figure displays the cases of only a CO2 injection or only a formate solution
injection, while the second row showcases the hybrid techniques. It is important to note
that the injection point for all strategies remains consistent and is placed at the bottom of
the aquifer. The regime is less gravity-dominant when only a formate solution is injected,
in agreement with the results obtained by Oyenowo et al. [29]. However, the primary
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goal of this study is to evaluate hybrid strategies. Therefore, the best hybrid plans were
the co-injection and alternate ones. The pre-flush case could not prevent CO2 upward
buoyancy flux to the surface/seafloor depth.
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Even in the combined strategies, where the total injection rate was higher, it was
possible to inject below the maximum bottomhole pressure (BHP) of 30,000 kPa (Figure 13)
for this saline aquifer to avoid fracturing the rock, highlighting that it is operationally
possible to inject both CO2 and the formate solution [46]. The curves show a consistent
behavior when only CO2 is injected (lower viscosity phase), developing lower pressures
(red curve). The co-injection presented an average curve for BHP (green curve) when
compared with that of the alternated case (light-purple curve), since the injected masses
(CO2 and formate) were the same.
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After 100 years of redistribution (Year 2145), the CO2 plume in the best strategies (co-
injection and alternate injection) remained stationary/immobile below the surface depth,
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as shown in Figure 14, highlighting the effectiveness of the buoyancy control exerted by
the formate solution over the CO2 plume in those combined strategies.
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Figure 14. Cross-sectional view of the CO2 saturation along the well trajectory 100 years after the
injection shutoff (coordinates in meters). (A) Simultaneous and continuous injection of CO2 and
format solutions. (B) Continuous CO2 injections and alternating formate injections.

Regarding the aquifer average pressure, its build-up was less intense than it was
observed in the wellbore, mitigating geomechanical risks associated with the high pressure,
such as fracture initialization or fault activation. Figure 15 compares the average pressures
of the cases where only CO2 is injected with the two best options when the CO2 injection
is combined with the formate solution in co-injection and alternated ways. The wavy
behavior in the curve of the alternated case (light purple) is due to the injection of the
formate solution in periodic slugs.

Regarding the possible CO2 mineralization induced by the higher pH generated by
the formate injection around the injector well, mineral precipitation was not observed since
this case is a sandstone matrix without reactive carbonate minerals, and the formation brine
presents a low concentration of Ca2+ ions.
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4.3. Sensitivity to the Formate Volume

Figure 11 shows the relationship between the volumes of CO2 and the formate solution
injected. For more significant amounts of CO2 compared to the formate solution, this
combination was not effective in controlling the CO2 plume rise. For this study, the optimal
ratio R should be lower or equal to 1. However, as commented before, R < 1 would require
a larger mass of formate per well, which can be costly. Although economic evaluation is
outside the scope of this work, some simulations for CCUS projects can be found in [29].
Economic evaluation depends on each country’s carbon credit and tax relief policies, which
vary over time, besides the subsurface pressure, depth, and CO2 injection rate.

4.4. Sensitivity to Rock Permeability

Injectivity can be a concern because of the higher viscosity of the formate solution (3 cP
in this study) than CO2 (0.05 cP). However, this technique is still possible for lower injection
rates in mid-permeability cases (average of 150 mD), despite the lower injectivity than
CO2. Supposing the permeability of the model is reduced by a factor of 10, the co-injection
and alternated cases can still operate with typical CO2 injection capacities, respecting the
maximum BHP of 30,000 kPa, as shown in Table 4. According to data from different storage
sites [48,49], those rates are practical for a CCS project, ranging from 0.1 million metric
tons/yr. In the co-injection strategy, the total mobility of the fluids injected (CO2 + formate)
is higher, so the injectivity is more affected than in the alternated case.

Table 4. CO2 injected over 20 years, considering a reduction of 10 times in the horizontal permeability
of the model.

Case Cumulative CO2 Injected

Original Permeability
(Mean: 1500 mD)

Reduced Permeability
(Mean: 150 mD)

Alternated 30 million metric tons 3.10 million metric tons
Co-injection 30 million metric tons 1.85 million metric tons

5. Conclusions

This paper discussed the risk of CO2 leakage in CCS projects where the caprock
is not an effective barrier and investigated the possibility of controlling the buoyancy-
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driven upward flux of CO2 by injecting an aqueous solution of formate species. The main
conclusions are summarized below:

• The co-injection of an aqueous formate solution could make the gravity-dominant
regime less intense during CO2 injection for carbon storage purposes, especially when
the CO2 and formate solution volumes are approximately the same;

• Three injection strategies were evaluated against the single fluid injection (only CO2
or formate). The best strategies combine the simultaneous injection of the two fluids,
either continuous or alternated slugs of formate solution. Both cases prevent a CO2
plume from rising to the surface and keep the plume stationary over hundreds of
years of redistribution;

• A secondary benefit of the formate solution is the pH buffering, which results in a
suppressed change in pH when CO2 is injected. This mechanism induced calcite
precipitation from brines in the studied case. Thus, it could be an additional and
permanent CO2 trapping mechanism in this buffer zone in carbonate rocks.
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Nomenclature

C Land’s constant, dimensionless
cf rock compressibility, kPa−1

D diffusion coefficient, cm²/s
Deff effective diffusion coefficient, cm²/s
k current absolute permeability, mD [9.869 × 10−4 µm2]
Hi Henry’s constant at current pressure (p) and temperature (T), dimensionless
H∗

i Henry’s constant at reference pressure (p*) and temperature (T), dimensionless
Nj the total moles of mineral j, gmol/m³
p pressure, kPa
R universal gas constant, 8.314 kPa·L/mol·K
rf resistance factor, dimensionless
Sgt trapped gas saturation, dimensionless
Sg max maximum gas saturation, dimensionless
vi partial molar volume at infinite dilution, L/mol
Greek Symbols
φ current porosity
ρm mineral molar density, gmol/m3

ρ density, kg/m³
τ tortuosity, dimensionless
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