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a b s t r a c t 

Thermodynamic modeling of phase behavior is one of the most fundamental components in the study of 

enhanced oil recovery by gas injection. Robust algorithms exist for multiphase equilibrium problems with 

no capillary pressure as commonly used in compositional reservoir simulation. However, various conver- 

gence problems have been reported even for simple two-phase split problems in the presence of capillary 

pressure by using the traditional algorithm based on minimization of the Gibbs free energy. In this re- 

search, the phase-split problem with capillary pressure is formulated by using the Helmholtz free energy 

for a given temperature and total volume. The algorithm is based on the successive substitution (SS) for 

updating K values, which is coupled with the volume update by using the pressure constraint equation. 

The robustness of the SS algorithm is improved by using the convexity information of the Helmholtz free 

energy and using an under-relaxation method. Case studies present phase-split problems with capillary 

pressure by using the developed algorithm and highlight several advantages of using the Helmholtz free 

energy over the Gibbs free energy. The improved robustness comes mainly from the involvement of a 

single energy surface regardless of the number of phases. The pressure variability that occurs during the 

phase-split calculation with capillary pressure is inherent in the Helmholtz free energy in volume space. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Gas injection has been studied and implemented to improve 

he oil recovery in tight reservoirs [1-3] . An optimal application 

f gas injection should be designed based on a fundamental un- 

erstanding of in-situ phase behavior and its interplay with mul- 

icomponent transport phenomena in tight porous media. Among 

any other factors, capillary pressure affects in-situ phase behav- 

or more likely in tight reservoirs than in conventional reservoirs. 

owever, it is not yet common practice to include the effect of cap- 

llary pressure on phase behavior in equation-of-state (EOS) com- 

ositional simulation of gas injection in tight reservoirs. 

Phase equilibrium calculations using an EOS consist of phase- 

tability and phase-split calculations. The traditional formulations 

nd algorithms are based on minimization of the Gibbs free en- 

rgy at a given temperature and pressure subject to material bal- 

nce [4-5] . Therefore, phase equilibrium calculations in the pres- 

nce of capillary pressure have been studied by a natural exten- 

ion of the traditional approach by considering different pressures 

or the equilibrium phases [6-8] . For example, a two-phase split 
∗ Corresponding author. 
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lgorithm involves minimization of the total Gibbs free energy of 

wo phases that have different pressures. The iterative solution of 

uch a phase-split problem is often challenging because the phase 

ompositions lie on two different Gibbs free energy surfaces in 

omposition-pressure space. Since the capillary pressure is part of 

he solution, the relative location of one Gibbs free energy surface 

hanges with respect to the other surface during the iteration. This 

omplexity is coupled with the non-linearity of the Gibbs free en- 

rgy that by itself causes various convergence problems even for 

he traditional phase-split calculation with no capillary pressure in 

ompositional flow simulation. 

Various types of convergence problems have been reported 

ith the methods using the Gibbs free energy. For example, Ne- 

hat et al. [9] showed that a non-physical part of the Gibbs free 

nergy (e.g., the vapor side of the Gibbs free energy at a liquid- 

hase pressure) caused the traditional stability analysis method to 

onverge to a wrong solution. A meta-stable part of the Gibbs free 

nergy can also make it invalid to use the traditional criterion for 

he root selection of a cubic EOS as demonstrated by Neshat et al. 

8] . 

Another example is related to the existence of a limiting cap- 

llary pressure above which no solution exists for a two-phase 

plit calculation. In the case of vapor-liquid equilibrium with a 

https://doi.org/10.1016/j.fluid.2021.112960
http://www.ScienceDirect.com
http://www.elsevier.com/locate/fluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fluid.2021.112960&domain=pdf
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Nomenclature 

Roman symbols 

a Interfacial area 

a m 

Mixture attraction parameter obtained from van der 

Waals mixing rules 

A Helmholtz free energy 

b i Co-volume parameter for the Peng-Robinson equa- 

tion of state 

b m 

Mixture co-volume parameter obtained from van 

der Waals mixing rules 

d i Molar density for component i 

c User specified constant in our algorithm 

D T Tangent plane distance to A/VRT defined in Eq. (24) 

E Volume balance equation 

f ij Fugacity of component i in phase j 

F i Stationarity equation i 

F Vector containing values of stationarity equations 

g i Function used in general SS iteration to update the 

ith independent variable 

g Vector containing functions used in general SS iter- 

ation 

Ḡ ij Partial molar Gibbs free energy of component i in 

phase j 

G Gibbs free energy 

J Jacobian matrix containing the derivatives of the SS 

iteration functions 

K ij K-value of component i in phase j 

N c Number of components 

N p Number of phases 

N i Number mole of component i in a mixture 

N Vector containing number mole of each component 

in a mixture 

P j Pressure of phase j 

P c Critical pressure 

P cap Capillary pressure 

P cap Capillary pressure function 

r Residuals used to determine convergence 

R Ideal gas constant 

t i ith independent variable for general SS iteration 

t Vector containing independent variables for general 

SS iteration 

T Temperature 

T c Critical temperature 

V Volume 

V Molar volume 

v Molar volume of the less dominant phase 

V̄ i Partial molar volume for component i 

x ij Mole fraction for component i in phase j 

x j Vector containing the mole fractions for each com- 

ponent in phase j 

Greek letters 

α Under-relaxation constant 

ε Tolerance for convergence criterion or small pres- 

sure value 

βj Phase mole fraction of phase j 

δ1 Constant parameter in general cubic equation of 

state 

δ2 Constant parameter in general cubic equation of 

state 

δi Independent variable used for the Hessian of A/VRT 

δ Vector containing independent variables used for 

the Hessian of A/VRT 
S

2 
ζ Under-relaxation constant 

λ Eigenvalue of a given matrix 

σ Interfacial tension or other interfacial property 

when used as a subscript 

φij Fugacity coefficient of component i in phase j 

Superscripts 

k Outer loop iteration step index 

pk Inner loop iteration steps index used in Step 6.1 

bk Inner loop iteration steps index used in Step 7 
∗ Variable or function in the vicinity of the solution 

′ Property of an under-relaxed algorithm 

Subscripts 

B Bissection 

d Dominant 

In Initialization 

l Lower limit of a bisection interval 

L Liquid 

lim Limit of the physical domain 

max Maximum 

r Reference 

SP Stationary point of the TPD 

u Upper limit of a bisection interval 

V Vapor 

Abbreviations 

EOS Equation of state 

PR Peng-Robinson 

SS Successive substitution 

VL Vapor-liquid 

iquid-wet surface, such a limiting capillary pressure occurs when 

he equilibrium liquid phase is located on the spinodal boundary 

 7 , 10 ]. Such a two-phase problem with no solution may be avoided

y limiting the capillary pressure to a certain value (e.g., a value 

orresponding to a 10-nm tube) [ 7 , 11-14 ]. However, it is desirable

o identify whether there is a solution to the specified thermody- 

amic problem. 

The convergence problems reported in the literature indicate 

hat the traditional minimization of the Gibbs free energy may not 

e the most suitable formulation for the phase-split problem with 

apillary pressure. It involves N P surfaces of the Gibbs free energy, 

here N P is the number of equilibrium phases. This is a substan- 

ial complexity because (N P – 1) surfaces move with respect to 

he Gibbs free energy surface for the reference phase in composi- 

ion space during the iterative solution. A potential solution to the 

roblems described above is to reformulate the problem as mini- 

ization of the Helmholtz free energy for a given temperature and 

olume, in which the variability of phase pressures is inherently 

ncluded in the function to be minimized. 

Achour [15] and Achour and Okuno [16] presented a new for- 

ulation and algorithm for phase stability analysis with capillary 

ressure by minimization of the Helmholtz free energy. Various 

dvantages of using only one energy surface were demonstrated. 

or example, the failure of the stability analysis because of the 

on-physical part of the Gibbs free energy does not occur with 

he formulation and algorithm using the Helmholtz free energy. 

he main reason is that it involves only one energy surface re- 

ardless of N P . The next question to be addressed in this research 

s whether the phase-split problem with capillary pressure can be 

ore robustly solved by using the Helmholtz free energy. 

The Helmholtz free energy was recently used for phase-split 

alculations including capillary pressure. Lu et al. [17] adapted the 

S algorithm of Mikyška and Firoozabadi [18] to include the cap- 
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llary pressure. Kou and Sun [19] also applied their previous flash 

alculation algorithm [20] to include capillary pressure. Sandoval 

t al. [21] discussed the advantage of using the variable space 

f the Helmholtz free energy that simplifies the derivatives of 

olume-explicit capillary pressure models. However, it is not clear 

n the literature whether use of the Helmholtz free energy can 

mprove various convergence problems with the traditional phase- 

plit methods using the Gibbs free energy. 

Jindrová and Mikyška [22] and Lu et al. [17] reported conver- 

ence issues of the SS algorithm based on the Helmholtz free 

nergy. However, they did not present a detailed analysis of the 

onvergence issues and only proposed to use an ad-hoc under- 

elaxation [17] and other numerical methods [22] . 

This paper presents a new algorithm for phase-split calculations 

or tight porous media using the Helmholtz free energy. Case stud- 

es demonstrate the improved robustness of two phase-split calcu- 

ations because of using the Helmholtz free energy. 

. Formulation and algorithm 

This section first presents the formulation for phase-split cal- 

ulation including capillary pressure by using the Helmholtz free 

nergy. Then, it introduces the algorithm used to solve the formu- 

ated problem by using the traditional SS method with several im- 

ortant modifications. As will be shown in this paper, the main 

dvantage of using the Helmholtz free energy for phase-split calcu- 

ation with capillary pressure is that only one smooth energy sur- 

ace is involved in the calculation regardless of N P . In contrast, the 

raditional phase-split methods inherently involve multiple Gibbs 

ree energy surfaces that are sometimes first-order discontinuous. 

sing only one energy surface makes it possible to furnish a tech- 

ique to confirm an indefinite situation, in which the fluid is un- 

table but does not have a valid two-phase solution. The algorithm 

resented here is designed to take this advantage of the formula- 

ion using the Helmholtz free energy. 

.1. Phase stability analysis with the Helmholtz free energy 

The first and second laws of thermodynamics require that the 

elmholtz free energy of the system be minimized for an equi- 

ibrium state at a specified temperature T , volume V , and number 

oles N i of N C components ( i = 1 , . . . , N C ) subject to material bal-

nce. With these thermodynamic specifications, a vapor-liquid (VL) 

quilibrium state of the system requires 

A = d A V + d A L + d A σ (1) 

o be zero, where A, A V , A L , and A σ are the Helmholtz free energies 

f the total system, the V phase, the L phase, and the interface, 

espectively. The change in Helmholtz free energy is 

 A j = −S j d T j − P j d V j + 

N C ∑ 

i=1 

Ḡ ij d N ij (2) 

or phase j (j = V and L), 

 A σ = −S σ d T σ − P σ d V σ + σda + 

N C ∑ 

i=1 

Ḡ i σ d N i σ (3) 

or the interface. In Eqs. (2) and (3) , S is entropy, P is pressure, σ is

nterfacial tension, a is interfacial area, and Ḡ i is the partial molar 

ibbs free energy for component i ( i = 1 , . . . , N C ). 

The minimization of the Helmholtz free energy is subject to the 

aterial balance constraints on the number of moles for each com- 

onent 

 N + d N + d N = 0 , where i = 1 , . . . , N C , (4)
iL iV i σ

3 
he total volume constraint 

 V L + d V V + d V σ = 0 , (5) 

nd the temperature constraint 

 T L = d T V = d T σ = 0 . (6) 

The minimization of the Helmholtz free energy is also con- 

trained by the positivity of the mole numbers for both phases 

 ≤ N iL ≤ N i , where i = 1 , . . . , N C , (7) 

nd minimum molar volume for both phases 

 j ≥ V lim , j , where j = L , V . (8) 

Cubic equations of state usually evaluate the minimum volume 

 lim , j as 

 lim , j = 

N C ∑ 

i=1 

b i N ij , (9) 

here b i is the co-volume parameter for component i ( i = 

 , . . . , N C ). 

Using Eqs. (4)-(6) , Eq. (1) can be written as 

A = −( P V − P L ) d V V − ( P σ − P L ) d V σ + σda 

+ 

N C ∑ 

i=1 

(
Ḡ iV − Ḡ iL 

)
d N iV + 

N C ∑ 

i=1 

(
Ḡ i σ − Ḡ iL 

)
d N i σ . (10) 

Eq. (10) is simplified by assuming the changes in volume and 

omponent’s mole number for the interface are negligible in com- 

arison to the other terms; that is, 

A = −( P V − P L ) d V V + σda + 

N C ∑ 

i=1 

(
Ḡ iV − Ḡ iL 

)
d N iV . (11) 

The stationarity condition for the minimization of the 

elmholtz free energy is that dA = 0 at the VL equilibrium; i.e., 

¯
 iV − Ḡ iL = 0 , (12) 

r the widely used fugacity equations 

 i = ln ( f iL ) − ln ( f iV ) = 0 (13) 

n N V space, where i = 1 , . . . , N C . In Eq. (13) , f iL and f iV are the

ugacities of component i ( i = 1 , . . . , N C ) in the L and V phases,

espectively. Eq. (12) (or 13) makes the following condition for 

A = 0: 

 N C +1 = P V − P L − P cap = 0 (14) 

n V V . Note that P cap = σda / d V V at equilibrium (i.e., when 

q. (13) is satisfied). The capillary pressure can be estimated 

y using a capillary pressure model (e.g., the Young-Laplace and 

aturation-based models) or by giving a numerical value. 

In summary, the phase-split calculation for a VL equilibrium 

tate is to find N V and V V such that F = 0 , given F ∈ R 

N C +1 at T,

, and N with a specified value or function for capillary pressure. 

bviously, ( N V , V V ) can be changed to ( N L , V L ) with no loss of gen-

rality in the formulation. The algorithm used for this problem is 

resented in the next subsection. 

.2. Algorithm 

The algorithm is based on the SS method [ 17-18 , 23 ], in which

ach iteration contains two mains steps: the composition update 

hrough one SS step by using Eq. (13) and the volume update by 

sing Eq. (14) . The composition update is based on the traditional 

ethod of Rachford and Rice [24] that solves Eq. (13) for lnK i 

n K = ln x − ln x (15) 
i iV iL 
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long with the material balance 

 i = 

N P ∑ 

j=1 

βj x ij , (16) 

here z i is the overall concentration of component i, β j is the 

ole fraction of phase j, x ij is the concentration of component i in 

hase j, and N P is the number of phases (j = L and V, and N P = 2

n this research). The Rachford-Rice routine used in this research is 

escribed in Okuno et al. [25] . The volumes are updated through 

he solution of the pressure equation, subject to the volume bal- 

nce. 

Then, the main structure of the algorithm is to find lnK i (i = 1,

, …, N C ) and V V (or V L ) such that F = 0 , given F ∈ R 

N C +1 at T,

, and N with a specified value or function for capillary pressure, 

hile ensuring that the lower-pressure phase is intrinsically sta- 

le. The intrinsic stability condition is numerically verified that the 

essian matrix of A L /VRT is positive definite through a Cholesky 

ecomposition (If the square root of a negative number is encoun- 

ered in the Cholesky decomposition, then the original matrix is 

ot positive definite). 

A concise description of the sequential iteration scheme is 

resented below, which is followed by some specific details of 

teps 1 , 2 , 4 , 5 , 6 , and 7 in sub- Sections 2.2.1 through 2.2.4.

ppendix A shows a flowchart of the algorithm. 

tep 1. Initialize lnK and V . Use the stability analysis if the refer-

nce phase is intrinsically stable; otherwise, use Wilson’s correla- 

ion at the specified total molar volume. 

1.1 Compute the Hessian matrix of Ar/VRT and check the pos- 

itive definiteness through a Cholesky decomposition. Sub- 

script “r” represents the reference phase. 

1.2 If the Hessian matrix is positive definite, perform the sta- 

bility analysis [15-16] . If the reference phase is stable, stop. 

Otherwise, set the initial guess for the L and V phases to the 

compositions and molar volumes of the reference phase and 

stationary point (SP) of the TPD. 

1.3 If the Hessian matrix is not positive definite, then compute 

the initial guess for lnK based on Wilson’s correlation and 

use bisection to determine the pressure that satisfies the to- 

tal molar volume specification. 

1.4 Initialize the iteration index k: k ← 1. 

tep 2. Compute the under-relaxation factor ζ . 

tep 3. Compute lnP φk 
L 

and lnP φk 
V 

. 

tep 4. Update the capillary pressure. 

4.1 Use a capillary pressure model to compute P 

k 
cap . 

4.2 Update the capillary pressure (P cap ) 
k ← (1- 

ζ )(P cap ) 
k-1 + ζP 

k 
cap . 

tep 5. Update the phase compositions. 

5.1 Update lnK by using a SS step ( ln K i ) 
k ← ( 1 − ζ ) ( ln K i ) 

k −1 + 

ζ ( ln φiL P L − ln φiV P V ) . 

5.2 Solve the Rachford-Rice equations for the phase composi- 

tions x k 
L 

and x k 
V 

, and the phase molar fractions βk 
L 

and βk 
V 

. 

tep 6. Update the phase molar volumes 

6.1 Solve Eq. (14) using Newton’s method. 

6.2 If the iterative molar volume violates the physical condition 

of Eq. (8) , then update the molar volume by using a first- 

order Taylor series approximation. 

tep 7. If the lower-phase pressure is intrinsically unstable, then 

se bisection to reduce its molar volume until it lies on the limit 

f intrinsic stability (spinodal boundary). 
4 
tep 8. Check for convergence. If max i < Nc {|F i |} < εss , then stop. 

therwise, k ← k + 1 and return to step 2 . In this research, εss is

et to 10 −10 . 

.2.1. Initialization 

When the Hessian matrix of the Helmholtz free energy is 

ositive-definite at the overall composition, the composition and 

olar volume of the new phase are initiated by the stationary 

oint (SP) of the TPD. The mole fractions of the reference and 

ncipient phases are respectively set to (1 −ε1 ) and ε 1 . ε 1 must 

e a small positive number to compute a valid initial guess for 

he volume update in step 6.1 as will be further explained in 

ection 2.2.3 .In this research, ε1 is set to 10 −5 . Also, the phases need

o be identified to use the capillary pressure model. Many meth- 

ds can be used for this purpose [26-27] . We have found that it 

s robust to use a comparison of the mixture covolume parameters 

iven by the van der Waals mixing rules [28] , as follows: 

If b r > b SP , then the reference phase is L and the incipient phase 

s V; 

Otherwise, the reference phase is V and the incipient phase is 

; where b r and b SP are the covolume parameters at the reference 

omposition and SP of the TPD, respectively. 

When the Hessian matrix of the Helmholtz free energy is not 

ositive definite at the overall composition, the fluid is unstable. 

hen, Wilson’s correlation [29] is used to initialize K-values. Bisec- 

ion iterations are used to find the pressure that yields the speci- 

ed total molar volume 

L V L + βV V V − V r = 0 , (17) 

ithin the pressure range [ ( 
N c ∑ 

i=1 

z i 
P 

vap 
i 

) 

−1 

, 
N c ∑ 

i=1 

z i P 
vap 
i 

] . This procedure 

s robust assuming that the total molar volume given by the 

onstant K-flash calculations using Wilson’s correlation decreases 

onotonically with increasing pressure. 

The detailed substeps for step 1.2 are then as follows: 

1.2.1 Use Wilson’s correlation [29] to estimate the bubble point 

P bbl and the dew point P dew 

as the upper and lower limits 

of the phase pressure for the bisection interval. 

1.2.2 Solve the Rachford-Rice equations, solve the cubic EOS, and 

compute the total molar volumes V u and V l at P bbl and P dew 

. 

1.2.3 If the specified molar volume is not within the bisection in- 

terval [ V u , V l ] , set the composition and molar volumes to 

the closest edge of the bisection interval, and go to step 1.3. 

1.2.4 Compute the pressure of the reference phase P r . If P bbl > P r 
> P dew 

, then set the phase pressures to P r . Otherwise, set 

the pressure to the middle of the bisection interval. 

1.2.5 Use Wilson’s correlation [29] to estimate K-values. 

1.2.6 Solve the Rachford-Rice equations for x L , x V , βL , and βV . 

1.2.7 Solve the cubic EOS and compute the total molar volume. 

1.2.8 | ( V l − V u ) / V r | < ε In , go to step 1.3. Otherwise, update the bi- 

section interval and pressure. In this research, ε In is set to 

10 −2 . 

.2.2. Under-relaxation for K-values and capillary pressure 

Jindrová and Mikyška [22] found a difficult case with a binary 

ixture, for which the outer-loop iterations of their SS algorithm 

iverged no matter how close the initial guess was to the solu- 

ion their SS algorithm was initiated. Similarly, Lu et al. [17] en- 

ountered convergence issues with their SS algorithm because of 

improper updating of K i values.” They found an optimal way of 

mproving the convergence behavior with the following under- 

elaxation on K values: 

 

k+1 
i 

= ζg i 
(
K 

k 
i 

)
+ ( 1 − ζ ) K 

k 
i , (18) 

here i = 1 , . . . , N C , g i ( K 

k 
i 
) is the function which returns the full SS

tep for K , and ζ was an under-relaxation factor set to 0 . 5 . Cases
i 
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ave been found in this research, where ζ = 0 . 5 was not small

nough for the SS algorithm to converge. 

This subsection presents an under-relaxation scheme for the 

apillary pressure and K-value update ( Steps 4 and 5 ) that ensures 

onvergence of the outer-loop of the flash algorithm. Heidemann 

nd Michelsen [30] analyzed the convergence behavior of the tra- 

itional SS algorithm for isobaric-isothermal flash (the solution of 

q. (13) for lnK i ). The general form of the SS iteration equation is

erived by rewriting the equations to be solved F = 0 as 

 

k+1 = g 

(
t k 

)
, (19) 

here k is the iteration index, t is a vector of N independent vari-

bles and g is a function for mapping R 

N onto R 

N . Then, the con- 

ergence behavior of the traditional SS algorithm in the vicinity of 

he solution [i.e., t ∗ = g(t ∗) ] is dominated by the largest eigenvalue

in absolute value) | λd | of the Jacobian matrix of g with respect to

 [4] . When | λd | < 1 , the SS algorithm is guaranteed to converge

30] . In this study, the dominant eigenvalue, λd , is estimated us- 

ng the power method, where the initial guess for the dominant 

igenvector-eigenvalue pair can be taken as the converged values 

n the previous phase-split iteration. 

We apply Heidemann and Michelsen’s procedure for analyzing 

he SS algorithm for isothermal-isochoric (TV) flash. The Jacobian 

atrix contains the derivatives of g ∈ R 

N C +1 with respect to t ∈ 

 

N C +1 , where 

 i = ln ( K i ) + ln ( f iL ) − ln ( f iV ) for i = 1 , 2 , . . . , N C , (20) 

 N c +1 = P cap V r / RT , (21) 

 i = ln ( K i ) for i = 1 , 2 , . . . , N C (22) 

 Nc +1 = P cap )V r / RT. (23) 

P cap is equal to the difference in the phase pressures at a 

iven iteration, and P cap is the capillary pressure calculated using 

he capillary pressure model with iterative phases. When under- 

elaxation is used, these two variables are not equal except at 

he converged solution. P cap and P cap are multiplied by V r /RT in 

qs. (21) and (23) to avoid computing ill-conditioned jacbian ma- 

rices. 

Appendix B shows the analytical expression for J 

 R 

( N C +1 ) ×( N C +1 ) . Note that as opposed to the Jacobian matrix 

or the isobaric-isothermal (PT) SS algorithm, the derivatives are 

aken assuming a constant total volume, instead of a constant 

ressure, for ∂ g i /∂ t j for i = 1, 2,…., N C and j = 1, 2,… N C . This

ifferent constraint results in the additional B matrix in the S 

atrix block of the Jacobian. The Jacobian matrix presented here 

lso departs from that of the PT flash because of the N C + 1 th 

olumn and row. 

Heidemann and Michelsen [30] explained that λd > 1 occurs in 

addle-shaped regions or local maxima of the Gibbs free energy. 

n these cases, the SS algorithm with no under-relaxation diverges 

rom the saddle point until it reaches the neighborhood of a min- 

mum of the Gibbs free energy to which it then converges. λd > 1 

lso allows the TV flash calculations to avoid converging to local 

axima or to saddle points of the Helmholtz free energy. 

Furthermore, Heidmann and Michelsen [30] showed that λd < 

1 could occur with flash calculations for polar species causing a 

igh degree of non-ideality. Then, iterates tend to oscillate back 

nd forth and diverge from the solution no matter how close the 

nitial guess is to the solution. They proposed to use a “damping 

actor” ζ for updating the logarithm of the K-values as shown in 

tep 5.1 of the algorithm above. 
5 
The under-relaxation has the effect of directly transforming all 

he eigenvalues λi ( i = 1 , . . . , N c ) of the Jacobian into λ
′ 
i 
, where 

′ 
i = 1 − ζ ( 1 − λi ) . (24) 

Eq. (24) applies to the dominant eigenvalue λd : | λd | = 

max 
=1 , ... , N c +1 

| λi | . This makes it possible to select an appropri- 

te under-relaxation factor that satisfies | λ′ 
d 
| < 1 . Heidmann and 

ichelsen [30] noted that excessive damping should be avoided as 

t could make the eigenvalues λ
′ 
i 

closer to 1, resulting in slower 

onvergence [30] . It is also undesirable to set λ′ 
d 

to −1 as that 

ould result in non-convergence. 

The damping factor is also used to generalize the updating 

cheme for P cap as shown in step 4.2. The under-relaxation factor 

s computed by setting λ′ 
d 

equal to −0.9 as shown below in step 

.3. This under-relaxation is only necessary if λd < −0 . 9 , otherwise 

= 1 . 

It is sometimes necessary to further decrease the under- 

elaxation factor in the initial iterations. As noted by Orbach and 

rowe [31] , the convergence behavior is only dictated by the dom- 

nant eigenvalue in proximity to the solution. However, the initial- 

zed variables are often far from the final solution. To avoid di- 

ergence of the algorithm during the early iterations, the under- 

elaxation factor is multiplied by a safety factor shown in step 2.4 

s shown below. 

The detailed substeps for Step 2 are then as follows: 

2.1 If the L phase was found to be intrinsically unstable at the 

end of the previous outer loop iteration, compute the Jaco- 

bian matrix J using Appendix C . Otherwise, compute J using 

Appendix B . 

2.2 Use the power method to compute the dominant eigenvalue 

λd of J. 

2.3 If λd < −0 . 9 , set ζ ← 1 . 9 / ( 1 − λd ) . Otherwise, ζ ← 1 . 

2.4 If maxi < Nc {|Fi|} < 0.1, ζ ← 0 . 5 ζ ; else if maxi < Nc {|Fi|} <

10 −3, set 

2.5 ζ ← 0 . 25 ζ ( 1 − log 10 ( max 
i < N c 

{ | F i | } ) ) . 
Section 2.2.4 explains why a different Jacobian matrix from that 

f Appendix B is needed to compute the relaxation factor when 

he liquid phase is found to be intrinsically unstable in the previ- 

us iteration. The analytical expression of J to compute the under- 

elaxation factor in these cases is given in Appendix C . 

.2.3. Volume update 

In step 6.1, the phase molar volumes are updated by solv- 

ng Eq. (14) , sometimes called “pressure equation.” Mikyška and 

iroozabadi [18] proposed a bisection method by using phase satu- 

ations with the upper and lower bounds being 0 and 1. Nichita 

23] pointed out that this domain could result in a violation of 

he condition given by Eq. (8) . Also, Lu et al. [17] showed that

q. (14) had multiple roots, and used an exhaustive search method 

or a pair of the roots that minimize the total Helmholtz free en- 

rgy of the V and L phases. 

It is easy to show that Eq. (14) can have up to six roots. 

q. (14) can be rewritten by using the general form of a cubic 

quation of state as 

 N C +1 = 

RT 

V V − b V 

− a V (
V 

2 
V + 2 b V V V − b 

2 
V 

) − RT 

V L − b L 

+ 

a L 

V 

2 
L + V L b L − b 

2 
L 

− P cap = 0 , (25) 

here V L and V V are the molar volumes, b L and b V are the co- 

olume parameters, a L and a V are the attraction parameters of 

he L and V phases, respectively. The volume constraint gives V L = 

 V − V V βV ) / βL and then, Eq. (25) can be expressed as a polynomial 

f degree six. 
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In this research, Newton’s method is applied to solve 

q. (14) with the following variable: 

 = )v lim 

/ 
(
)v − )v lim 

)
, (26) 

here v is the molar volume of the less dominant phase (i.e., 

he phase with a smaller β value), and v lim 

is the molar 

olume of the less dominant phase at the closest limit of 

he domain defined by Eq. (8) along with the volume con- 

traint. Here, the closest limit is V lim,j where phase j is the 

ne with the smallest V j / V lim,j (j = L, V). Use of q as the

ndependent variable results in more robust and rapid solu- 

ion of Eq. (14) than using v . The derivative of Eq. (25) with 

 is ∂ F N c +1 /∂q = −( 
βV 
βL 

d P L / d V L − d P V / d V V )( v − v lim 

) / Q if the 

iquid phase is the dominant one. Otherwise, ∂ F N c +1 /∂q = 

 

βL 
βV 

d P L / d V L − d P V / d V V )( v − v lim 

) / Q . 

This solution finds a local root for each phase which depends 

n the value from the previous iteration step (if k > 2) or the ini-

ialization from Step 1 (if k = 1). Therefore, it is important to ob-

ain a physically correct root in Step 1 that results in the lowest 

elmholtz free energy. An interesting problem associated with the 

raditional root selection based on the Gibbs free energy is illus- 

rated in Section 3.2 . 

The detailed substeps for the molar volume update in step 6.1 

re as follows: 

6.1.1 Determine the identity of the dominant phase. 

6.1.2 Compute the closest limit of the molar volume domain v k 
lim 

. 

6.1.3 Compute the initial guess for the independent variable q = 

v k −1 
lim 

/ ( v k −1 − v k −1 
lim 

) 

6.1.4 Compute the phase molar volumes. 

6.1.5 Set pk ← 1 . 

6.1.6 Compute the pressure and isothermal compressibility for 

both phases using the EOS. 

6.1.7 Compute the pressure equation F N c +1 and the derivative of 

the pressure equation ( ∂ F N c +1 /∂q ) . 

6.1.8 Update q using a Newton iteration q pk +1 ← q pk −
F N c +1 / ( ∂ F N c +1 /∂q ) . 

6.1.9 Compute the phase molar volumes. If the molar volume of 

the L or V phase is not within the physical limit defined by 

Eq. (8) , then use the volume update of step 6.2 instead. 

.1.10 If | F N C +1 / ( P 
k −1 
V 

+ P k −1 
L 

) | > ε P , set pk ← pk + 1 and return to 

step 6.1.6. Otherwise, continue to Step 7 . 

In this research, ε P is set to 10 −10 . The existence of a correct 

olution that maintains the phase identity is not always guaran- 

eed. Several examples of challenging cases have been presented 

y Lu et al. [17] . In this research, when Newton’s method fails to

onverge to a feasible root satisfying Eq. (8) , the molar volumes 

re estimated using a Taylor expansion based on the change in liq- 

id component moles �N iL = βk 
L x 

k 
iL 

− βk −1 
L 

x k −1 
iL 

( i = 1 , . . . , N c ) and

apillary pressure �P cap ← P k cap − P k −1 
cap from the previous iteration. 

he change in total liquid volume 

V L ← 

N c ∑ 

i=1 

V̄ iL �N i −
βL / 

(
dP 

d V L 

)
βL / 

(
dP 

d V L 

)
+ βV / 

(
dP 

d V V 

)
( 

βV / 

(
dP 

d V V 

)
�P cap + 

N c ∑ 

i=1 

(
V̄ iL − V̄ iV 

)
�N i 

) 

(27) 

ives a change in total vapor volume �V V = −�V L and a change 

f liquid molar volume V 

k 
L = ( V 

k −1 
L βk −1 

L 
+ �V L ) /β

k 
L . The molar vol- 

me for the V phase is determined through the volume balance 

 

k 
V = ( V ref − V 

k 
L β

k 
L 
) /βk 

V 
. If the feasibility Eqs. (8) and (9) are not sat-

sfied for both phases, �n iL and �P cap are halved until the phase 

quilibrium can pass the feasibility test. 
6 
The detailed substeps of step 6.2 for the volume update when 

ewton’s method fails are as follows: 

6.2.1 Compute the change in liquid component moles �N iL ← 

βk 
L 

x k 
iL 

− βk −1 
L 

x k −1 
iL 

. 

6.2.2 Compute the change in capillary pressure �P cap ← P k cap −
P k −1 

cap . 

6.2.3 Estimate the change in liquid volume using a truncated first- 

order Taylor series extrapolation using Eq. (27) . 

6.2.4 Compute the phase molar volumes V 

k 
L ← 

( V 

k −1 
L βk −1 

L 
+ �V L ) /β

k 
L 

for the L phase and, 

6.2.5 V 

k 
V ← ( V 

k −1 
V βk −1 

V 
− �V L ) /β

k 
V 

6.2.6 If V 

k 
V > b V and V 

k 
L > b L , then halve the liquid component 

moles step size �n iL and capillary pressure step size and re- 

turn to step 6.2.3. Otherwise, continue to Step 7 . 

.2.4. Capillary pressure overshoot detection and correction 

The phase equilibrium problem with a capillary pressure can 

esult in an indefinite situation in which the fluid of interest is 

nstable, but has no two-phase solution. This indefinite situation 

rises when the capillary pressure is greater than the limit at 

hich the liquid-phase composition is located at a spinodal point 

n the Helmholtz (or Gibbs) free energy [ 7 , 10 ]. This can occur dur-

ng the iterative solution when the iterative capillary pressure ex- 

eeds the limiting value. A graphical explanation of indefinite so- 

utions is given in Sections 3.3 and 3.4 . 

In the algorithm used in this research, Step 7 checks for any 

ntrinsic instability of the iterative lower-pressure phase. This is 

one through the Cholesky decomposition of the Hessian matrix of 

/VRT in δ space, in which δi = 2 
√ 

N i / V (i = 1, 2,….,N C ), for each

hase [ 15-16 , 32 ]. If the Hessian matrix is non-positive definite for 

ither phase, the molar volume of the lower-pressure phase is de- 

reased until the Hessian at the lower-pressure phase is positive 

efinite. Assuming that the lower-pressure phase has a positive- 

efinite Hessian of A L /VRT at V L = b L (1 + ε2 ), V L can be readjusted 

sing a bisection in the interval [b L (1 + ε2 ), V L ], where ε2 is a small

umber to be chosen by the user. This assumption is valid for LV 

ixtures characterized by closed type-I phase envelopes [33-34] . 

hen, the iterative capillary pressure is recalculated as the differ- 

nce in pressure at the limit of instability of the lower-pressure 

hase. No adjustment is made for the updated P cap , if no eigen- 

alue is negative for the Hessian matrix of the A L /VRT function for 

he lower-pressure phase. 

The substeps of Step 7 for the capillary overshoot detection and 

orrection are the following: 

7.1 Compute the Hessian matrix of AL/VRT and check to see if it 

is positive definite through a Cholesky decomposition. If the 

Hessian is positive definite, then go to Step 8 . 

7.2 Set the lower limit of bisection to V l ← b L ( 1 + ε 2 ) , the up- 

per limit to V u ← V 

k 
L , the initial liquid molar volume V 

k 
L ← 

( V l + V u ) / 2 , and initialize the iteration counter bk ← 1 . 

7.3 Compute the Hessian of AL/VRT and check to see if it is pos- 

itive definite through a Cholesky decomposition. 

7.4 If the Cholesky decomposition succeeds, then set bk ← bk + 

1 , V l ← V 

k 
L . Otherwise, set V u ← V 

k 
L . 

7.5 If | ( V u − V l ) / V 

k 
L | > ε B , then return to step 7.4. Otherwise, 

continue to Step 8 . 

In this research, ε B and ε2 are set to 10 −10 and 10 −5 , respec- 

ively. This method uses the geometry of the Helmholtz free energy 

o update the molar volume instead of the solution to the pressure 

quation. Therefore, a different Jacobian J for SS is needed to an- 

lyze and ensure the convergence of the algorithm in Step 2 . The 

erivation and analytical expression of this Jacobian are given in 

ppendix C . 
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Table 1 

Critical properties for the methane/n-decane mixture used for Sections 3.1 and 3.3 . 

Component T c P c Acentric factor Parachor Binary interaction parameters 

K Bar C 1 n-C 10 

C 1 190.7 46.0 0.008 74.05 0 0 

n-C 10 617.6 21.1 0.49 440.69 0 0 
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. Case studies 

This section presents case studies to demonstrate the advan- 

age of using the Helmholtz free energy over the Gibbs free energy 

or phase-split calculations with capillary pressure. The cases are 

ocused on VL equilibrium of hydrocarbon mixtures. The thermo- 

ynamic model used is the Peng-Robinson EOS [ 35 ] with van der 

aals’ mixing rules [28] . Volume shift is not used within this re- 

earch as it affects the fugacity equations when equilibrium phases 

ave different pressures [36] . The Young-Laplace model is used to 

ompute the capillary pressure in case studies 1 through 3, while a 

aturation-based capillary pressure model is used in case study 4. 

n each case study, the parachor correlation was used to compute 

he interfacial tension, using a parachor coefficient of 3.88 [37] . 

.1. Case 1: Discontinuity across phase boundaries 

The subsection reports a subtle problem associated with the 

onventional method using the Gibbs free energy. The conventional 

ethod is used for a specified pressure and temperature. In the 

resence of capillary pressure, however, it is not clear which phase 

hould be assigned the specified pressure. It appears that no gen- 

ral solution to this problem has been found without knowing 

he relativity of the specified thermodynamic conditions to phase 

oundaries and critical points in pressure-temperature space (e.g., 

ubble and dew point curves for VL equilibrium). The problem re- 

orted here occurs only when the conventional method is used 

ear a bubble-point (dew-point) curve in the presence of capillary 

ressure with a pressure specified to the V phase (L phase). Non- 

hysical discontinuities in phase properties can stop the reservoir 

imulation from proceeding [38] . A fundamental solution to the 

roblem is to use the Helmholtz free energy for a given temper- 

ture and total volume, in which phase pressures are part of the 

olution. 

This case study uses the equimolar mixture of methane and n- 

ecane as shown in Table 1 . Let us consider the traditional phase- 

plit calculation using the Gibbs free energy for this mixture at 394 

 and 158.5 bar for a 10-nm tube that is liquid-wet (the contact 

ngle is equal to 0 ̊). Supposing this pressure is the V phase pres-

ure, Fig. 1 a shows the Gibbs free energy surfaces at 158.5 bar for 

he V phase and 152.9 bar for the L phase. That is, the capillary

ressure is 5.6 bar. Fig. 1 b shows the tangent plane distance func- 

ion defined at the overall composition (50 mol% methane). The 

angent plane distance at the V phase is zero, indicating that this 

ondition is a bubble point for this equimolar mixture at 394 K in 

 10-nm tube. 

Then, the same calculation is repeated after increasing the pres- 

ure to 158.5 + ε bar (in this example, ε is 5.0 × 10 −3 bar). Fig. 2

resents the tangent plane distance function defined at the overall 

omposition (50 mol% methane; point A in Fig. 2 ). The stationary 

oint (“SP” in Fig. 2 ) corresponding to the V phase has a positive 

angent plane distance, which indicates that the equimolar mix- 

ure is stable at this pressure. Therefore, the calculation concludes 

hat this mixture at 158.5 + ε bar is stable as a single phase. This

ransition of the phase from the L-phase Gibbs free energy curve 

point L in Fig. 1 b) to the V-phase Gibbs free energy curve (point

 in Fig. 2 ) across the bubble point occurs because the system is 

pecified by the V-phase pressure. This causes a discontinuity in 
7 
he L-phase pressure, which in turn results in discontinuous prop- 

rties of the L phase, such as density, across the bubble point. Con- 

equently, the discontinuity in pressure is equal to the capillary 

ressure at the bubble point. Note that the single-phase pressure 

n Fig. 2 cannot be set to 152.9 bar because this pressure is calcu- 

ated using the phase properties of a non-existent gaseous phase 

see the point “SP” in Fig. 2 ). 

Fig. 3 shows the density of the L phase as calculated by min- 

mization of the Gibbs free energy when the V-phase pressure is 

pecified across the bubble point at 394 K. When the system is 

pecified by a V-phase pressure greater than 158.5 bar, the mixture 

s stable as a single phase, and the pressure is used to compute 

he density of the stable L phase. The discontinuity in the L-phase 

ressure between the two hollow circles causes a discontinuity in 

ensity from 0.530 g/cc to 0.532 g/cc. Although the gap seems 

mall in this particular example, the problem is general when the 

onventional method is used with the V-phase pressure specifica- 

ion across a bubble point and with the L-phase pressure specifica- 

ion across a dew point. It is desirable to not have this type of non-

hysical discontinuity, especially for application in compositional 

eservoir simulation. The method using the Helmholtz free energy 

oes not have this problem because the total molar volume is con- 

inuous across a phase boundary as demonstrated in Section 3.4 . 

.2. Case 2: Root selection for a cubic EOS 

A cubic EOS can have two possible roots for each phase during 

hase-split calculations. “Root selection” refers to a numerical algo- 

ithm that identifies the root that leads to the correct convergence 

f the phase-split calculation. The conventional root selection is to 

elect the root that gives the lower Gibbs free energy for the phase 

f interest when the phase has two possible roots of the cubic EOS 

39] . However, Neshat et al. [8] demonstrated that this traditional 

riterion is not robust when the two phases have a large capillary 

ressure. 

This case study demonstrates that the root selection problem 

an be solved by using the Helmholtz free energy. Table 2 shows 

he fluid properties of the methane/n-butane binary system. Fig. 4 

ives the Gibbs free energy curves at 36.0 and 7.41 bar for the 

quimolar mixture of methane and n-butane at 333 K in a 3-nm 

apillary tube. In this figure, point “S 1 ” is the Gibbs free energy for 

ypothetically single-phase V, and “S 2 ” is the two-phase VL solu- 

ion. The Gibbs free energy of the L and V phases are denoted as A

nd C, respectively. Phases L and V have methane concentrations of 

8.4 mol% and 78.1 mol%, respectively. Point B corresponds to the 

ther real root of the EOS for phase L. For this case, the conven- 

ional root selection method selects the root with the lowest Gibbs 

ree energy, which is point B. However, that is not the correct root 

ince the lowest value of the total Gibbs free energy (S 2 ) is found

y points A and C. The calculated capillary pressure between the 

hases at points A and C would be different from that at points 

 and B due to the difference in phase properties. However, flash 

alculation algorithms update the capillary pressure at the begin- 

ing of each outer-loop iteration and treat it as a constant in the 

ntermediate steps which include the root selection. 

This binary system is described by using the Helmholtz free en- 

rgy (A/VRT) in d space, where d i = N i /V = x i / V (i = 1, 2,…,N C ).

ince the curvature of the function is more obvious in tangent- 
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Fig. 1. Gibbs free energy analysis for the equimolar mixture of methane/n-decane at a bubble point at 394 K in a 10-nm capillary tube. The L-phase pressure is 152.9 bar 

and the V-phase pressure is 158.5 bar. 

Table 2 

Critical properties for the methane/n-butane mixture used for Section 3.2 . 

Component T c P c Acentric factor Parachor Binary interaction parameters 

K Bar C1 n-C4 

C1 190.7 46.0 0.008 74.05 0 0 

n- C4 425.2 38.0 0.193 193.9 0 0 

Fig. 2. Tangent plane distance curves for an equimolar mixture of methane and n- 

decane in a 10-nm capillary tube, at 394 K, at the bubble point oil pressure of 152.9 

bar with a gas pressure of 158.5 + ε bar. 

Fig. 3. Density of the L phase across the bubble point at 394 K for the equimo- 

lar mixture of methane and n-decane ( Table 1 ) when the phase-split calculation is 

performed with a pressure specified for the V phase. 

8 
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Fig. 4. Gibbs free energy curves of the methane/n-butane system ( Table 2 ) at 36.0 

bar and 7.41 bar at 333 K. The capillary tube radius is assumed to be 3 nm. 

Fig. 5. \ Tangent plane distance to the A/VRT function defined at point C (V phase 

in Fig. 4 ) at 333 K, 36 bar, and 78.1 mol% methane. The gray plane is the tangent 

plane at the V phase, which defines the basal plane in this figure. The blue plane 

is the tangent plane at the L phase and parallel to the gray plane. The D T value for 

this blue plane gives P cap /RT. 
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Fig. 6. Gibbs free energy curves for the methane/n-decane system at 300 K and 30, 

200, and 330 bar. There is no equilibrium solution for the 60%-methane mixture 

with the L-phase pressure specified at 30 bars if the surface is liquid wet. 
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lane distance (D T ) defined at a reference phase, we use the D T 

unction (instead of A/VRT) defined as follows: 

 T = 

[ 

N C ∑ 

i=1 

(
Ḡ i − Ḡ ir 

)
d i − ( P − P r ) 

] 

/ RT , (28) 

here subscript “r” represents the reference phase. Fig. 5 shows 

 T with the V phase (point C in Fig. 4 ) as the reference phase. The

ray plane is the tangent plane at the V phase, which defines the 

asal plane in this figure. The blue plane is the tangent plane at 

he L phase and parallels to the gray plane. The D T value for this

lue plane gives P cap /RT as explained in Achour [15] and Achour 

nd Okuno [16] . Points A, B, and C are located on a single D T sur-

ace. Note that A and B are on two different convex parts of D T ,

ndicating that these two points have different characteristics (or 

dentities) as fluids. The possibility of two phases with points B 

nd C is denied by both Eqs. (12) (or 13) and 14. 

This figure clarifies that a robust root selection will avoid the 

witching from one side to another on the D T plane for a given 

hase. This can be done by i) initialization of the two-phase split 

alculation by using a phase stability analysis algorithm that pro- 

ides good initial guesses on the basis of minimization of the 
9 
elmholtz free energy [15-16] ; and ii) consistent selection of the 

ubic EOS root when Eq. (14) is solved throughout the iteration. 

.3. Case 3: Indefinite solution using the conventional method 

As described in the introduction section, a phase-split problem 

ncluding capillary pressure may encounter the indefinite situation, 

n which the fluid is unstable as a single phase, but no solution 

xists for the phase-split calculation. The algorithm developed in 

his research is designed to detect and confirm such indefinite sit- 

ations. It finds a limiting capillary pressure at which one of the 

hases is located on the spinodal boundary of the Helmholtz free 

nergy (A/VRT) while satisfying Eqs. (13) and (14) with the cap- 

llary pressure identified. This confirms the indefinite situation by 

nding the limiting capillary pressure, beyond which no solution 

xists for the phase-split problem. 

Fig. 6 shows the Gibbs free energy curves for the methane/n- 

ecane system ( Table 1 ) at 300 K at three pressures: 30 bars (solid

urve), 200 bar (dashed curve), and 330 bar (dotted curve). Two 

ypes of failures of the traditional phase-split method using the 

ibbs free energy are described below. In this case study, the cap- 

llary pressure is treated as a constant to simplify the explanation 

nd for easy visualization. 

First, there is no equilibrium solution for a mixture of 60% 

ethane and 40% n-decane with the L-phase pressure specified at 

0 bars if the surface is liquid wet. As can be seen in this figure,

o common tangent line is possible between a point (L phase) on 

he curve at 30 bar and another point (V phase) on the curve at 

00 bar or 330 bar. This indefinite situation has been known since 

001 [10] , but may have been confused as a phase-stability prob- 

em [7] . As described below, it is more accurate to view it as the

ack of an equilibrium solution at high capillary pressure because 

he stability as a single-phase fluid is denied by the second law of 

hermodynamics. 

Fig. 7 shows the total Gibbs free energy for all possible two- 

hase configurations of 60% methane and 40% n-decane with no 

apillary pressure ( Fig. 7 a) and with a capillary pressure of 170 bar 

 Fig. 7 b) at 300 K and a L-phase pressure of 30 bar. The Gibbs free

nergy of the hypothetically single-phase mixture is shown with 

 bold line in the figure. The V phase is assumed to be richer in

ethane than the reference mixture, giving a range of methane 

ole fractions from 0.6 to 1. The range of methane mole fractions 

or the L phase is only shown from 0 to 0.5 because the upper 
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Fig. 7. Total Gibbs free energy for a mixture of 60 % methane and 40% n-butane 

with a liquid pressure of 30 bar with no capillary pressure (a), and with a gas phase 

pressure of 200 bar (b). 
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Fig. 8. Tangent plane to the Helmholtz free energy surface for the methane/n- 

decane system at 300 K and 0.1055 L/mol in a tube with a capillary radius of 0.1 

nm. The solution is indefinite as a result of the capillary radius being overly small. 

The phase compositions (L and V) at convergence are represented by the two points 

on the Helmholtz free energy. For clarity, the region near the L phase in (a) has 

been magnified in (b). 
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imit corresponds to the edge of the oil branch of the Gibbs free 

nergy curve at 30 bar ( Fig. 6 ). 

Fig. 7 ab show that there are two-phase systems that have a 

maller total Gibbs free energy than the hypothetically single- 

hase fluid. However, only the case with no capillary pressure has 

n equilibrium solution as given by the minimum ( Fig. 7 a). For the

ase of a capillary pressure of 170 bar, the Gibbs free energy sur- 

ace does not have a minimum ( Fig. 7 b). This explains why there is

o equilibrium solution for the binary mixture and why no com- 

on tangent line can be drawn from the 30 bar Gibbs free energy 

urve to the 200 bar one. 

Second, if the capillary pressure is set to be 170 bar (i.e., the 

-phase pressure is 200 bar), the phase-split calculation results 

n the common tangent line shown in Fig. 6 . This erroneously 

ives an L phase at 69 mol% methane and a V phase at 8.4 mol%

ethane. This type of phase flipping can cause complete failures 

f compositional reservoir simulation [40] . 

Fig. 8 shows the D T function using the V phase as the reference 

hase. The non-convex region is shown in green, and this intrin- 

ically unstable region separates two convex regions for the L and 

 phases. Fig. 8 also shows the iterative steps for the equimolar 

ixture for a 0.1-nm tube. This example with an extremely small 

adius is to make the iteration steps clearer in this figure for illus- 

ration purposes. The L phase initialized at point A goes to point B 

fter the update of capillary pressure, composition, and molar vol- 
10 
mes. Point B is in the green region of non-convexity with a capil- 

ary pressure of 110.4 bar. The algorithm then adjusts the capillary 

ressure, repeats the volume update, and repositions the L phase 

rom point B to point C on the spinodal boundary. With point C 

eing the L phase, the capillary pressure is 79.79 bar. This adjust- 

ent is performed when any of the phases go to the region of 

on-convexity in the algorithm developed. In the case shown in 

ig. 8 , the convergence is achieved with an L phase at 48.0 mol% 

ethane and a V phase at 92.6 mol% methane. This converged L 

hase is marked by a black dot, which is located on the spinodal 

oundary. The capillary pressure for this converged solution is 35 

ar. This capillary pressure does not follow the capillary pressure 

odel, which gives 356 bar. Hence, the algorithm concludes that 

his phase-split problem has an indefinite solution. 

The separation of the convex regions of the Helmholtz free en- 

rgy (or D T in the above example) by the non-convex region gives 

 useful constraint for the phase-split calculation with capillary 

ressure. It does not seem possible to take a similar approach with 

he Gibbs free energy because different phases are located on dif- 

erent Gibbs free energy surfaces in pressure-composition space in 

he conventional phase-split method as shown in Fig. 6 . 
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Table 3 

Peng-Robinson EOS model for the equimolar mixture of Eagle Ford light oil and methane [41] . This fluid is used for 

Section 3.4 . 

Composition Molecular weight Critical pressure Critical temperature Acentric factor Parachor 

mole fraction g/mol bar K 

N 2 0.00073 28.01 33.9349143 126.2 0.04 41 

CO 2 0.01282 44.01 73.8431786 304.222222 0.225 78 

C 1 0.31231 16.04 46.3944429 190.7 0.013 77.3 

C 2 0.04314 30.07 48.8255536 305.427778 0.097 108.9 

C 3 0.04148 44.1 42.5551214 369.888889 0.152 151.9 

i-C 4 0.0135 58.12 36.46735 408.111111 0.185 181.5 

n-C 4 0.03382 58.12 37.9562071 425.222222 0.201 191.7 

i-C 5 0.01805 72.15 33.3269643 460.388889 0.2223 225 

n-C 5 0.02141 72.15 33.7419143 469.783333 0.2539 233.9 

n-C 6 0.04623 86.18 30.3078929 507.888889 0.3007 271 

C 7-10 0.16297 112 27.7644286 589.166667 0.3739 311 

C 11-14 0.12004 175 21.2093214 679.777778 0.526 471 

C 15-19 0.10044 210 16.6393571 760.222222 0.6979 556.3 

C 20 + 0.07306 250 10.4151071 896.777778 1.0456 836.4 

Table 4 

Binary interaction parameters for the fluid shown in Table 3 [41] . This fluid is used for 

Sections 3.4 . 

N 2 CO 2 C 1 C 2 C 3 i-C 4 n-C 4 i-C 5 n-C 5 

N 2 0 

CO 2 -0.02 0 

C 1 0.036 0.1 0 

C 2 0.05 0.13 0 0 

C 3 0.08 0.135 0 0 0 

i-C 4 0.095 0.13 0 0 0 0 

n-C 4 0.09 0.13 0 0 0 0 0 

i-C 5 0.095 0.125 0 0 0 0 0 0 

n-C 5 0.1 0.125 0 0 0 0 0 0 0 

n-C 6 0.1 0.125 0 0 0 0 0 0 0 

C 7-10 0.151 0.11 0.025 0.02 0.015 0.01 0.01 0.005 0.005 

C 11-14 0.197 0.097 0.049 0.039 0.029 0.019 0.019 0.01 0.01 

C 15-19 0.235 0.085 0.068 0.054 0.041 0.027 0.027 0.014 0.014 

C 20 + 0.288 0.07 0.094 0.075 0.056 0.038 0.038 0.019 0.019 

Table 5 

Capillary pressure parameters used for Section 3.4 , as given in Neshat et al. [8] . 

The permeability was reduced to 0.5 μD to make region II more apparent in Fig. 9 . 

γ S w φ k b o b g a o a g S omin S gmin 

μD 

3.88 0 0.045 0.5 0.1 -0.027 1.35 0.1 0.07 0.063 
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Fig. 9. Phase envelope for Eagle Ford light oil including the effect of a saturation- 

based capillary pressure. Regions I and II show the conditions where the dominant 

eigenvalues for the Jacobian matrices described in Appendices B and C satisfy the 

condition λd < −0 . 9 , respectively. The vertical line represents the isotherm at 350 

K along which the pressure-volume relation is computed using the PT and TV flash 

algorithms in Fig. 10 . The convergence behavior of the algorithm for Points A, B, 

and C are shown in Figs. 10 , 11 , and 12 , respectively. 

p
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.4. Case 4 

This case study presents the convergence behavior of the algo- 

ithm developed in this research and illustrates the points made 

n the previous case studies using a more realistic fluid, an Ea- 

le Ford light oil. The PR EOS model [41] is given in Table 3 and

 . Table 5 gives the parameters for the saturation-based capillary 

ressure model fitted the data for a tight rock [8] . The permeability 

as reduced from 9 μD to 0.5 μD to help illustrate the challenging 

onvergence to indefinite solutions. 

Fig. 9 shows the P-T phase envelope for the Eagle Ford light 

il. The shaded regions I and II represent the conditions at which 

he dominant eigenvalue of the Jacobian ( Appendices B and C ) are 

maller than −0.9. In those cases, the molar volume update and 

nder-relaxation procedures are performed according to the pro- 

edure described in Section 2.2.4 . We perform flash calculations 

long the isotherm at 350 K and show the convergence behavior 

f the algorithm at points A, B, and C. Points A and B are at 350 K.

Fig. 10 shows the results of the PT and TV flash calculations 

long the 350 K isotherm. The discontinuity in density occurs with 

T flash, but not with VT flash. The magnitude of the discontinu- 

ty is smaller than in case 1 because it is equal to the capillary
11 
ressure at the phase boundary. The interfacial tension in this case 

s equal to 2.5 mN/m. To avoid this type of discontinuous phase 

ehavior prediction needs flash calculations based on total molar 

olume instead of phase pressure. 
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Fig. 10. Density of the L phase across the bubble point at 350 K for Eagle Ford 

light oil ( Tables 3 and 4 ) when the phase-split calculation is performed using the 

V-phase pressure using the VT and PT flash algorithms. 

Fig. 11. Convergence behavior for the algorithm for Eagle Ford light oil ( Tables 3 

and 4 ) at 350 K and a total molar volume of 238.3 cc/mol. The L- and V-phase pres- 

sures at convergence are 50.00 bar and 64.75 bar, respectively. The L-phase pressure 

and temperature conditions are shown in Figure 9 as point A. 
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Fig. 12. Convergence behavior for the algorithm for Eagle Ford light oil ( Tables 3 

and 4 ) at 350 K and a total molar volume of 182.7 cc/mol. The L- and V-phase pres- 

sures at convergence are 100.0 bar and 105.4 bar respectively. The L-phase pressure 

and temperature conditions are shown in Fig. 9 as point B. 

Fig. 13. Convergence behavior for the algorithm for Eagle Ford light oil ( Tables 3 

and 4 ) at 733 K and a total molar volume of 640.0 cc/mol. This is an example of 

indefinite solution, and the algorithm converges to the limit of indefiniteness by 

readjusting the molar volumes and capillary pressure during the iteration. The L- 

and V-phase pressures at convergence are 74.31 bar and 74.64 bar, respectively. The 

V-phase pressure and temperature conditions are shown in Fig. 9 as point C. 
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Fig. 11 shows the convergence behavior for the new algorithm 

t point A at 350 K for a molar volume of 238.3 cc/mol. The L-

nd V-phase pressures at convergence are respectively 50.00 and 

5.75 bar. This figure shows that the residual converges linearly 

ith two distinct slopes on the logarithmic scale. The slope change 

fter 10 iterations is caused by the use of safety factors used in 

he under-relaxation when the residual is smaller than 10 −3 (see 

ection 2.2.2 ). No under-relaxation was used when the residual 

as greater than 10 −3 because the dominant eigenvalue of the Ja- 

obian ( Appendix B ) is -0.65, which is greater than -0.9. 

Fig. 12 shows the convergence behavior (solid line) for this al- 

orithm at point B for a temperature of 350 K and a molar vol- 

me of 182.7 cc/mol. The L- and V-phase pressures at conver- 

ence are 100.0 and 105.4 bar, respectively. In this case, an under- 

elaxation factor of 0.586 is needed to converge to the correct solu- 

ion because the dominant eigenvalue of the Jacobian ( Appendix B ) 

s -2.24. The dashed, dash-dotted, dotted, and loosely dotted line 

hows the convergence behavior when the under-relaxation rou- 

ine is made inactive at ||F i || ∞ 

≈ 10 −1 , 10 −2 , 10 −5 , and 10 −8 . As

oon as the under-relaxation is interrupted, the residual deviates 
12 
rom the original convergent behavior, and diverges. This diver- 

ence behavior was previously observed and reported by Jindrová

nd Mikyška [22] and Lu et al., [17] for flash calculation with and 

ithout capillary pressure. However, they neither presented any 

nalysis of the divergence behavior, nor proposed systematic meth- 

ds for convergence to the correct solution. It is essential to use 

he under-relaxation method developed in this paper. 

This divergence behavior is caused by the increase of el- 

ments of matrix B ( Appendix B ) near the bubble point 

t low temperatures because of the inverse of the term 

 βL / ( d P L / d V L ) + βV / ( d P V / d V V ) ) . Near the bubble point, βV ap- 

roaches 0. At low temperatures, d P L / d V L and d P V / d V V increase. 

n general, the magnitude of the capillary pressure does not have 

 very strong effect on the size of region I. 

Fig. 13 shows the convergence behavior for the new algorithm 

t point C for a temperature of 733 K and a molar volume of 

40.0 cc/mol. The L and V phase pressures at the converged limit 

f indefinite solution are respectively 74.31 and 76.64 bar, giving 
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 capillary pressure of 0.33 bar (the capillary pressure given by 

he capillary pressure model is equal to 0.43 bar). In this case, 

n under-relaxation factor of 0.927 was needed to converge to the 

orrect solution because the dominant eigenvalue of the Jacobian 

 Appendix B ) is equal to -1.05. The same divergence behavior as 

egion I occurs when the relaxation is interrupted at any point in 

he algorithm. 

. Conclusion 

The phase-split problem in the presence of capillary pressure 

as formulated using the Helmholtz free energy for a given tem- 

erature and total volume. The algorithm developed in this re- 

earch is based on the successive substitution method for the 

 value update coupled with the volume update through the 

ressure constraint equation. Case studies demonstrated that the 

hase-split problem with capillary pressure can be more robustly 

olved by using the Helmholtz free energy than the Gibbs free en- 

rgy. Conclusions are as follows: 

• The traditional methods, which use the Gibbs free energy, can 

cause a discontinuity in phase properties across phase bound- 

aries. This undesirable discontinuity occurs when the specified 

pressure is given to the V phase acrossa bubble pointand when 

it is given to the L phase acrossa dew point. No general solu- 

tion exists for phase identification without a priori knowledge 

of phase behavior for the fluid of interest. This discontinuity 

problem does not occur with the algorithm developed in this 

research since total molar volume is continuous across a phase 

boundary and phase pressures are part of the solution. 
• The fundamental reason for the improved robustness is that 

the algorithm involves only one energy surface regardless of 

the number of phases. The variability of phase pressures that 

occurs during the iteration is inherently considered in the 

Helmholtz free energy to be minimized for a given tempera- 

ture and total volume. The robustness of the new algorithm was 

demonstrated for the cases in which the traditional method en- 

counters convergence problems because of a non-physical part 

of the Gibbs free energy (e.g., the V-phase part of the Gibbs free 

energy at the L-phase pressure). 
• A case study demonstrated that the new algorithm can detect 

and confirm the indefinite situation where the fluid is unstable 

as a single-phase fluid, but has no two-phase solution. For such 

an indefinite situation, the algorithm gives a capillary pressure 

with which one of the phases is located on the spinodal bound- 

ary while satisfying the fugacity equations and the pressure and 

mass balance constraints. The conventional method can either 

converge to an incorrect solution or result in non-convergence 

in such an indefinite situation. 
• In the cases studied in this research, two equilibrium phases 

were found on two distinct regions of convexity on the 

Helmholtz free energy. The two convex regions were separated 

by a non-convex region of intrinsic instability. This topological 

information of the Helmholtz free energy was used to improve 

the robustness of the successive substitution. 
• The convergence behavior of successive substitution was ana- 

lyzed for flash calculation using the Helmholtz free energy, on 

the basis of the dominant eigenvalue of the Jacobian matrix. 

The analysis enabled the algorithm to avoid the divergence near 

bubble points at low temperatures, and at some conditions of 

indefinite solution. 
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upplementary materials 

Supplementary material associated with this article can be 

ound, in the online version, at doi:10.1016/j.fluid.2021.112960 . 

ppendix A: Flow chart for TV flash using the Helmholtz free 

nergy 

The flow chart below presents the detailed steps for the algo- 

ithm developed in this research as explained in Section 2.2 . The 

owcharts for the initialization steps and the procedure for solving 

he pressure equation at each outer-loop iteration are given in the 

upporting information. 

ppendix B: Jacobian matrix for TV flash 

This appendix presents a detailed description of the Jacobian 

sed to evaluate the under-relaxation coefficient. The equations 

resented in this appendix contain many derivatives of the equa- 

ion of state, for which the supporting information provides ana- 

ytical expressions. 

The Jacobian contains derivatives of g at a constant total molar 

olume. The constant total molar volume constraint can be satis- 

ed by using the chain-rule 

∂ g i /∂ t j 
)

V , t k 
 =j 

= 

(
∂ g i /∂ t j 

)
P , t k 
 =j 

+ ( ∂ g i /∂P ) t 
(
∂ P /∂ t j 

)
V , t k 
 =j 

, (B1) 

here i = 1 , . . . , N c , j = 1 , . . . , N c , and the derivative of pres-

ure can be evaluated using chain rule again ( ∂ P /∂ t j ) V , t k 
 =j 
= 

( ∂ P /∂ V ) t ( ∂ V /∂ t j ) t k 
 =j 
. 

The Jacobian can be split into four separate parts 

 = 

(
S v 
w u 

)
, (B2) 

here S ∈ R 

(N C +1) ×(N C +1) , v and w ∈ R 

( N C +1 ) . The S matrix 

 = I + 

(∇ 

2 
TP G L + ∇ 

2 
TP G V − B 

)
Q 

−1 (B3) 

iffers from Jacobian derived by [4] for the PT flash only by the B 

atrix. 

In Eq. (B3) , ∇ 

2 
TP G is the isothermal isobaric Hessian of the Gibbs 

ree energy containing elements ∂ 2 G /∂ N i ∂ N j ( i , j = 1 , . . . , N c ) given

n the supporting information. The elements of matrix B are ex- 

ressed as 

 ij = ( RT ) 
−1 

(
V iL − V iV 

)(
V jL − V jV 

)
/ ( βL / ( dP L / d V L ) 

+ βV / ( dP V / d V V ) ) (B4) 

here i, j = 1,....,N C and the elements of the Q matrix are 

 ij = ∂ ln K i /∂N jL = 1 /βV + 1 /βL − δij ( 1 /βL x iL − 1 /βV x iV ) (B5) 

where i, j = 1,....,N C . The elements of the vector w are 

 i = ( RT ) 
−1 V r 

N c ∑ 

i=1 

(
∂ P cap /∂ N jL 

)(
∂ N jL /∂ ln K i 

)
(B6) 

here i = 1,....,N C and the derivatives ( ∂ N jL /∂ ln K i ) are equal to the 

j elements of the matrix Q 

−1 . The elements of the vector v are 

 i = −V 

−1 
r 

[(
V̄ iL − V̄ iV 

)
βV / ( d P V / d V V ) / ( βL / ( d P L / d V L ) 

+ βV / ( d P V / d V V ) ) + V̄ iV 

]
, (B7) 

here i = 1 , . . . , N c . The derivatives d V V / dP are equal to 

V / ( dP / d V V ) . Finally, the element at the bottom right of the 

acobian matrix is 

 = 1 − ( d P cap / dP L + d P cap / dP V ) ( dV V / dP ) / ( dV V / dP + dV L / dP ) 

(B8) 

here i = 1,....,N . 
C 

https://doi.org/10.1016/j.fluid.2021.112960
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ppendix C: Jacobian matrix for computing the limit of 

ndefinite solution 

This appendix presents a detailed description of the Jacobian 

sed to evaluate the under-relaxation coefficient for the indefinite 

olution. The supporting information provides many derivatives of 

he equation of state required for evaluation of the Jacobian. 

In the course of convergence to an indefinite solution, the capil- 

ary pressure is readjusted to the limit of indefiniteness, where the 

mallest eigenvalue of the Hessian matrix of the Helmholtz free 

nergy is 0. Then, the only independent variables are the phase 

ompositions through ln K i ( i = 1 , . . . , N c ). The Jacobian can then be

xpressed as 

 ij = 

(
∂ ( ln K i + ln ( f iL ) − ln ( f iV ) ) /∂ ln K j 

)
ln K k 
 =j ,λN c =0 

(C1) 

where i, j = 1,....,N C . An analysis of the eigenvalues and eigen- 

ectors is necessary to compute the derivative along the direction 

f constant minimum eigenvalue λN c . For a real symmetric Hessian 

 

2 
δ

A with the smallest eigenvalue λN c and corresponding eigenvec- 

or v [42] , the differential of the smallest eigenvalue is 

 λN c = v T d 

(∇ 

2 
δ A 

)
v . (C2) 

Along a line of constant eigenvalue, d λN c = 0 . In this research, 

he Hessian of the Helmholtz free energy ∇ 

2 
δ

A is evaluated in δ- 

pace because it is dimensionless. The analytical expressions for 

he Hessian is given in the Supporting information. The differen- 

ials for the Helmholtz free energy eigenvalue are evaluated in the 

ariable space of number of moles and total volume 

N c 
 

i=1 

v T 
(
∂ ∇ 

2 
δ A /∂ N iL 

)
v + v T 

(
∂ ∇ 

2 
δ A /∂ V L 

)
v = 0 , (C3) 

hich gives a derivative of the liquid volume along the constant 

inimum eigenvalue line 

∂ V L /∂ N jL 

)
λN c =0 , N k 
 = iL 

= −
(
v T 

(
∂ ∇ 

2 
δ A /∂ N jL 

)
v 
)
/ 
(
v T 

(
∂ ∇ 

2 
δ A /∂ V L 

)
v 
)
. 

(C4) 

The elements of ∂ ∇ 

2 
δ

A /∂ N jL = ∂ 3 A /∂ δk ∂ δj ∂ N jL and 

 ∇ 

2 
δ

A /∂ V L = ∂ 3 A /∂ δi ∂ δj ∂ V L can be evaluated analytically from the

hird-order derivative of the Helmholtz free energy in N -space 

 

3 A /∂ δk ∂ δj ∂ N iL = 

[ (
∂ 3 A /∂ N i ∂ N j ∂ N k 

)(√ 

N i 

√ 

N j 

)
+ 1 / ( 2N ) 

(
∂ 2 A /∂ δk ∂ δj 

)(
δik / x i + δjk / x j 

)] 
(C5) 

here i, j, k = 1,....,N C and the second-order derivative of pressure 

n N -space 

 

3 A /∂ δi ∂ δj ∂ V L = −
(
∂ 2 P /∂ N i ∂ N j 

)(√ 

N i 

√ 

N j 

)
(C6) 

here i, j, k = 1,....,N C . 

It is more convenient to evaluate the derivatives with respect 

o the number of moles of the liquid phase, and then multiply it 

ith the inverse of the Q matrix ( Appendix B ) than the logarithm

f K-values. Eq. (C1) can then be rewritten using the mole balance 

onstraint and the volume balance constraint and Maxwell’s rela- 

ions 

 = I + ( RT ) 
−1 

(∇ 

2 
N A L + ∇ 

2 
N A V − C 

)
Q 

−1 , (C7) 

here ∇ 

2 
N A is the Hessian of isothermal isochoric Helmholtz free 

nergy evaluated in mole number space at constant volume, and 

he elements of matrix C are equal to 

 ij = 

(
∂ V L /∂ N jV 

)
λN c =0 , N k 
 = jL 

(
( ∂ P L /∂ N iL ) N k 
 = iL + ( ∂ P V /∂ N iV ) N k 
 = iV 

)
. 

(C8) 
14 
here Maxwell’s relation can be used to obtain a simpler deriva- 

ive of ln ( f iL ) with volume 

 

∂ ln ( f iL ) /∂ V L ) N L = −( RT ) 
−1 

( ∂ P /∂ N iL ) N L , (C9) 

n terms of a derivative of pressure as given in the supplemental 

nformation. 
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