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a b s t r a c t

This paper presents a new method of phase stability analysis in the presence of capillary pressure by
minimization of the Helmholtz free energy. The thermodynamic consistency of phase stability is rigor-
ously preserved between the Helmholtz and Gibbs free energy.

Case studies demonstrate the main advantages of the new method over the conventional methods
using the Gibbs free energy. The effect of capillary pressure on phase stability is inherently considered in
the new method using the Helmholtz free energy. The most fundamental reason for various issues
associated with using the conventional methods is that the Gibbs free energy in composition space
requires a pressure to be specified; i.e., the conventional methods involve two Gibbs free energy surfaces
and their relative location changes during the iterative solution with capillary pressure.

Case studies further show that there exist indefinite solutions in phase stability analysis with capillary
pressure, in which the fluid is unstable, but no two-phase solution exists. Also, it is demonstrated that the
shadow-phase region in the presence of capillary pressure can be defined with the Helmholtz free en-
ergy, but not with the Gibbs free energy.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Phase equilibrium calculation using an equation of state (EOS) is
an essential part of various engineering calculations. Table 1 sum-
marizes the papers published on phase equilibrium calculations in
the presence of capillary pressure. The number of publications has
increased in response to the recent development of tight reservoirs
of oil and gas [1]. As implied in Table 1, it is becoming more
important to properly characterize thermodynamic phase behavior
in tight porous media and their interplay with transport phenom-
ena. The focus of this paper is on the phase stability problem in the
presence of capillary pressure.

The traditional formulation for phase stability analysis uses the
Gibbs free energy in composition space at a specified temperature
and pressure [2e5]. It is based on the thermodynamic requirement
that a phase equilibrium state at a given temperature and pressure
is defined by the global minimization of the Gibbs free energy in
composition space subject to material balance.

The standard solution method for the isothermal-isobaric phase
and Geosystems Engineering,
712, USA.
stability analysis is the stationary point method of Michelsen [3],
which locates stationary points of the tangent-place distance (TPD)
function and searches for a negative TPD. Any composition identi-
fied with a negative TPD value indicates that the fluid tested is an
unstable phase. Various methods of phase stability analysis using
the Gibbs free energy have been developed and used for engi-
neering purposes, such as stand-alone phase behavior computa-
tions and compositional simulation of petroleum reservoirs [6e8].
The fundamental importance of the TPD analysis was recently
reconfirmed through the application of TPD to the minimization of
the Gibbs free energy for complex multiphase equilibrium calcu-
lations [9].

The literature is much scarcer for phase stability analysis in tight
porous media. Multiple approaches have been proposed to
modeling the effects of capillarity on phase properties in tight
porous media [10]. One approach is to modify equations of state to
include the effects of pore walls on the bulk fluid [11]. The classical
approach models it as a difference between equilibrium phase
pressures given by the capillary pressure. The inclusion of capillary
pressure can be easily formulated using the TPD function with the
phase-specific Gibbs free energy surfaces; however, various
implementation problems have been reported in the literature.
Only a few major issues are briefly described here. The spinodal
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Table 1
Summary of published algorithms in the literature for equilibrium calculations with capillary pressure. “PT” and “TV” represent the thermodynamic specifications used to
specify the system.

Authors Year Algorithm Pcap model Specification Remarks

Brusilovsky
[40]

1992 Phase-split calculation Young-
Laplace

PT Phase-split calculation with capillary pressure.

Shapiro and
Stenby [12]

2001 Phase-split calculation Constant PT Study of the spinodal limit at large capillary pressure.

Nojabaei et al.
[41]

2013 Phase-split calculation Young-
Laplace

PT The effect of capillary pressure on phase envelope.

Wang et al.
[42]

2013 Phase-split calculation Saturation-
based

PT Phase-split calculation using saturation-based capillary pressure model.

Sandoval et al.
[43]

2016 Phase envelope Young-
Laplace

PT Efficient way to draw phase envelopes with capillary pressure.

Sherafati and
Jessen [15]

2017 Stability analysis Young-
Laplace

PT Stability analysis for tight porous media.

Yan et al. [35] 2017 Phase-split calculation and
stability analysis

Saturation-
based

PT Stability analysis for saturation-based capillary pressure model.

Siripatrachai
et al. [44]

2017 Phase-split calculation and
stability analysis

Young-
Laplace

PT Negative flash to determine the stability of a mixture.

Rezaveisi et al.
[13]

2018 Phase-split calculation Saturation-
based

PT Study of the spinodal limit in compositional space.

Kou and Sun
[23]

2018 Equilibrium calculation Young-
Laplace

TV Dynamic algorithm for equilibrium calculations.

Neshat et al.
[28]

2018 Phase-split calculation Saturation-
based

PT Demonstration that the conventional root selection is not necessarily correct with large
capillary pressure.

Sandoval et al.
[45]

2018 Phase-split calculation Young-
Laplace

PT Phase-split calculation including the compositional effect on adsorption.

Sun and Li [46] 2019 Phase-split calculation Young-
Laplace

PT Phase-split calculation for three phases with capillary pressure.

Nichita [21] 2019 Stability analysis Young-
Laplace

TV TV-based stability analysis with capillary pressure.

Lu et al. [47] 2019 Phase-split calculation Young-
Laplace

TV TV-based flash calculation with capillary pressure.

Sandoval et al.
[25]

2019 Phase-split calculation Saturation-
based

PT Accelerated method for PT flash using molar volume as a variable.

Neshat et al.
[15]

2019 Phase-split calculation and
stability analysis

Saturation-
based

PT Stability analysis explained in the context of shadow phase region. Demonstration of the issue
associated with the non-physical Gibbs free energy region.

Nichita [24] 2019 Phase envelope Young-
Laplace

TV New method to draw phase envelopes.
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boundary of the Gibbs free energy defines the limit of capillary
pressure for phase stability analysis [12,13]. This capillary pressure
limit makes various implementation problems because the capil-
lary pressure is part of the iterative solution in phase stability
analysis using the Gibbs free energy. Although Sherafati and Jessen
[14] concluded that the traditional TPD analysis was valid by using
the Young-Laplace model with capillary radii of 3e50 nm, Neshat
et al. [15] demonstrated another issue that the conventional
method using the Gibbs free energy can fail because a non-physical
part of the Gibbs free energy (e.g., the vapor side of the Gibbs free
energy at a liquid-phase pressure) can cause the TPD to be negative.
Hence, the traditional TPD analysis [3] cannot be applied without
ad-hoc modifications to the phase stability problem with capillary
pressure.

It seems challenging for a computational algorithm to avoid or
solve the issues mentioned above in an efficient and robust manner
for multicomponent mixtures. Note that negative flash is not
equivalent to phase stability analysis as widely known for the
traditional phase equilibrium problem with no capillary pressure
[16]. The complexity of multicomponent phase behavior with
capillary pressure has made it difficult to study the impact of
capillary pressure (or tight pores) on fluid flow in tight porous
media. Therefore, there is a critical need to develop a fundamental
understanding and a robust method of phase stability analysis in
the presence of capillary pressure.

The fundamental cause of the issuesmentioned above is that the
Gibbs free energy requires a pressure to be specified. That is, the
conventional phase stability analysis requires two non-linear sur-
faces in composition space: the Gibbs free energy surface at the
reference-phase pressure and another Gibbs free energy surface at
the iterative incipient-phase pressure at the specified temperature.
Therefore, the Gibbs free energy surface for the incipient phase
changes with respect to that of the reference phase during the
iteration because the capillary pressure is unknown. This
complexity associated with multiple Gibbs free energy surfaces
exists also for phase-split calculations with capillary pressure.

One way to address this fundamental issue is to formulate the
phase stability analysis with capillary pressure by minimization of
the Helmholtz free energy for a given temperature and volume.
With no capillary pressure, Nagarajan et al. [17] presented the
phase stability analysis using the Helmholtz free energy after
Michelsen and Heidemann [18]. Nagarajan et al. [17] showed that
the Helmholtz free energy in their variable space was smooth and
suitable for gradient-based minimization methods. Miky�ska and
Firoozabadi [19] explained that the stability analysis using the
Helmholtz free energy could not be solved robustly by the tradi-
tional successive substitution method. They suggested using
Newton's method, which was used by other researchers [20e22].

It is only recently that a few studies were published about the
application of the Helmholtz free energy for phase-stability and
phase-split calculations in the presence of capillary pressure
(Table 1). However, the advantage of using the Helmholtz free en-
ergy over the Gibbs free energy is not entirely clear in the literature.
For phase stability analysis with capillary pressure, Kou and Sun
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[23] presented a derivation of a phase stability criterion including
capillary pressure based on the Helmholtz free energy. They used
the convex-concave splitting of the Helmholtz free energy to
analyze the stability of pure substances and binary mixtures with
the Young-Laplace capillary pressure model. They discussed no
clear advantage over the conventional methods using the Gibbs
free energy. Nichita [21] modified an earlier algorithm for multi-
component stability analysis [22] to account for the effect of
capillary pressure, by following the derivation by Kou and Sun [23].
However, Nichita [21] presented some inconsistency between the
Helmholtz and the Gibbs free energy-based formulations, as will be
discussed in this paper. Nichita [21,24] highlighted that using the
Helmholtz free energy yields simpler derivatives for volume-
explicit capillary pressure functions. This computational advan-
tage was explained also for the volume-based method of phase-
split calculations including capillary pressure [25].

In this paper, we present a new formulation and algorithm for
phase stability analysis for tight porous media using the Helmholtz
free energy. Case studies demonstrate the differences of this paper
from recently published papers and the advantages over the con-
ventional methods of phase stability analysis with capillary pres-
sure. Common failures of the conventional methods are explained
and solved by the robust method developed in this paper.

This paper is focused on the liquid and vapor phases of
hydrocarbon-rich mixtures. The thermodynamic model used is the
Peng-Robinson equation of state (EOS) [26] with van der Waals’
mixing rules [27]. The capillary pressure is modeled by the Young-
Laplace and saturation-based models [28].
2. Formulation and algorithm

This section first presents the formulation for phase stability
analysis with a curved interface by using the Helmholtz free energy.
Then, the algorithm used for the formulated problem is presented.
2.1. Phase stability analysis with the Helmholtz free energy

The first and second laws of thermodynamics require that the
Helmholtz free energy of the system be minimized at an equilib-
rium state at a specified total molar volume, temperature, and
overall composition. With these thermodynamic specifications, a
phase is said to be stable if any possible perturbation cannot lower
the total Helmholtz free energy of the system. That is, the phase of
interest (“reference phase”) is stable if

dAtotal ¼ dAr þ dAs þ dA (1)

is non-negative for any possible incipient phase. In Equation (1),
dAtotal, dAr, dAs, and dA respectively represent the change in the
Helmholtz free energy for the total system, the reference phase, the
interface, and the incipient phase. The change in the Helmholtz free
energy is

dA¼ � SdT� PdVþ
XNC

i¼1

GidNi (2)

for the incipient phase,

dAr ¼ � SrdTr � PrdVr þ
XNC

i¼1

GirdNir (3)

for the reference phase, and
dAs ¼ � SsdTs � PsdVs þ
XNC

i¼1

GisdNis þ sda (4)

for the interface. In the above equations, S is entropy, T is temper-
ature, P is pressure, V is volume, Gi is the partial molar Gibbs free
energy of component i, s is the interfacial tension (IFT) between the
reference and incipient phases, a is the interfacial area, Ni is the
mole number of component i, and NC is the number of components.

The stability analysis is subject to the material balance, the
volume balance, and constant temperature as follows:

dNir þdNis þ dNi ¼ 0 (5)

dVr þdVs þ dVi ¼ 0 (6)

dTr ¼dTs ¼ dT ¼ 0: (7)

With these constraints, dAtotal is written as

dAtotal ¼ �ðP� PrÞdV� ðPs � PrÞdVs þ
XNC

i¼1

�
Gi � Gir

�
dNi

þ
XNC

i¼1

�
Gis � Gir

�
dNis þ sda

(8)

Supposing that the second and fourth terms are negligible in
comparison to the other terms on the right-hand side of Equation
(8), dAtotal is approximated as

dAtotal ¼ �ðP�PrÞdVþ
XNC

i¼1

ðGi �GirÞdNi þ sda: (9)

With no loss of generality, dAtotal is divided by RTdV, which is a
positive real number within this stability analysis. Then, the
determinant for the phase stability problem is

D¼dAtotal

,
RTdV¼

"XNC

i¼1

ðGi �GirÞdi �ðP�PrÞþP*

#,
RT;

(10)

where R is the universal gas constant and di¼ dNi/dV (i¼ 1, 2,…,NC)
as used by Nagarajan et al. [17]. P* physically represents sda=dV,
which depends on the equilibrium phase properties and energy

balance with the local interfacial geometries. Note that di ¼ xi/V

(i ¼ 1, 2,…,NC) and, therefore, Sdi ¼ 1/V, where xi and V are the
concentration of component i and the molar volume of the incip-
ient phase, respectively. The D function spans the d space, and can
be considered as the distance between the A/RTV function and the
plane that is parallel to the tangent plane to the A/RTV function
defined at dir (i¼ 1, 2,….,NC) (see Section 3.2 for more details of the
function).

The fundamental procedure for the phase stability analysis is to
find stationary points of D in d space of NC dimensions, and check

the sign of D at the identified stationary points for a given T, Vtotal,
and the overall (or reference-phase) composition xir (i ¼ 1,2,…,NC).
If D is found to be negative at any d, the reference phase is deter-
mined to be unstable. Note that the location of stationary points is
necessary only if the Hessian of the Helmholtz free energy is pos-
itive definite at xir; otherwise, the reference phase is uncondi-
tionally unstable.
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The stationarity conditions for D in d space are derived as

Fi ¼ vD=vdi ¼ lnf i � lnf ir ¼ 0 (11)

for i ¼ 1, 2,…, NC, for which the Gibbs-Duhem equation is used. In
the above equation, fi is the fugacity of component i. Note that P* is
a scalar value or function to be specified; e.g., the Young-Laplace
and saturation-based models relate P* to properties of the equi-
librium phases that satisfy Fi ¼ 0 and the associated constraints for
all i [29,30]. Hence, the derivative of the P* term is rigorously zero
for the stationarity conditions (see Section 3.1 for more details).

The D function at a stationary point (DSP) is

DSP ¼ ½ � ðP� PrÞþP*� =RT: (12)

If DSP < 0, dAtotal < 0 at the stationary point identified, noting
that dV > 0; therefore, the reference phase is determined to be
unstable. If DSP ¼ 0 at d with xi s xir, the incipient and reference
phases coexist at an equilibrium phase boundary with P* ¼ P� Pr as
the differential pressure between them. This also reconfirms that a
stationary point must satisfy the fugacity equations, Equation (11).
In general cases, however, P* is not directly related to capillary
pressure within this research except for phase boundary
calculations.

In summary, the phase stability analysis for tight porous media
using the Helmholtz free energy is formulated as

find dsp2 RNC such that F ¼ 0 and check if DSP < 0,
given F2 RNC at T, Vtotal, and xr with a specified value or function
for P*.

This analysis is usually repeated using multiple initial guesses
because it is generally difficult to ensure that the global minimum
of D is located in d space using a cubic equation of state. The search
for stationary points is a series of local minimization of D in d space
because the Jacobian matrix of Fi is the Hessian matrix of D.

The formulation above can be also derived by explicitly
assuming solid-fluid interfaces in addition to fluid-fluid interfaces.
Fig. 1. Dew point curves using the new method and the conventional method for the
SJ15 mixture (Table 2). The solid line represents the dew-point curve with no capillary
pressure. The dew-point curve for the 10-nm tube is shown by the bold dashed line for
the conventional method and by hollow circles for the new method using the Helm-
holtz free energy. The oil-phase pressures are shown for the phase boundary condi-
tions for the 10-nm tube.
In either way, the formulation given above remains because P* to be
specified by a capillary pressure model should contain such inter-
facial interactions in tight porous media.
2.2. Algorithm

As in Nichita [22], the independent variables for minimizing D
are di ¼ 2

ffiffiffiffiffi
di

p
(i ¼ 1, 2,….,NC). The thermodynamic model used in

this research is the Peng-Robinson EOS [26] with the van der Waals
mixing rules [27]. A stationary point of D in d space is located by

local minimizationwith linear constraints
P

bixi< V, where bi is the
covolume parameter of component i (i ¼ 1, 2,…., NC). That is,
minimize D(d) subject to b$d<1:0.

A step-wise description of the algorithm for each local mini-
mization is given below. This algorithm is usually repeated for
different initial guesses as discussed previously.

Step 1. Calculate the Hessian of D and see if it is positive definite
at the reference phase composition, xr. If it is positive definite,
go to Step 2. Otherwise, the reference phase is unstable, and
stop.
Step 2. Initialization of d

2.1 Initialize the incipient phase x and P using the method of the
user's choice.

2.2 Solve the equation of state for molar volume of the incipient
phase V.

2.3 Compute the initial d and the iteration variables d. Set the
iteration index k ¼ 0. dk ¼ d.

Step 3. Minimization of D using d

3.1 Compute the gradient of D at dk. This gradient is denoted as
gk.

3.2 Compute the Hessian matrix of D at dk. This matrix is
denoted as Hk.

3.3 Solve for the Newton direction Ddk through the modified
Cholesky decomposition. Hk is modified if it is weakly posi-
tive definite or non-positive definite.

Hk Ddk ¼ - gk

3.4 Use the line-search technique to optimize the step-size [22]
and confirm the feasibility of the iterate: b$d<1:0. If un-
feasible, reduce the step size l until dkþ1 becomes feasible.

dkþ1 ¼ dk þ lDdk

k ) k þ 1

3.5 Compute dk, V¼ (
P

di)�1, P, and xk¼ V dk. Then, calculate the
residual rk ¼ jjgkjj∞. If rk < εsp, continue to Step 4. Otherwise,
go to Step 3.2.

Step 4. Check the proximity of x to xr. If jjx � xrjj∞ > εts, x is
considered as a non-trivial stationary point and continue to Step
5. Otherwise, stop.



Table 2
Fluid properties for the SJ15 mixture as given in Ref. [14]. Other binary interaction parameters are all zero. This fluid is used for case studies in section 3.1 and 3.4.

Composition Tc Pc u Parachor Binary interaction parameters

mol fraction K bar N2 CO2 C1

N2 0.0018 126.2 34.045 0.04 43.85 0
CO2 0.0082 304.2 73.866 0.228 82.24 0.017 0
C1 0.2292 190.6 46.002 0.008 71.52 0.0311 0.12 0
C2 0.0721 305.4 48.839 0.098 113.71 0.0515 0.12 0
C3 0.0737 369.8 42.455 0.152 151.14 0.0852 0.12 0
i-C4 0.0158 408.1 36.477 0.176 181.78 0.1033 0.12 0
n-C4 0.0523 425.2 37.997 0.193 191.03 0.08 0.12 0
i-C5 0.0225 460.4 33.843 0.227 224.14 0.0922 0.12 0
n-C5 0.036 469.6 33.741 0.251 231.73 0.1 0.12 0
C6 0.0484 507.4 29.688 0.296 274.03 0.08 0.12 0
PS1 0.196107 565.85 29.708 0.34612 331.01 0.08 0.1 0.028349
PS2 0.113893 683.44 20.103 0.57838 546.37 0.08 0.1 0.044813
PS3 0.066598 798.99 13.324 0.90175 884.73 0.08 0.1 0.062256
PS4 0.041047 899.68 9.697 1.19183 1391.97 0.08 0.1 0.077679
PS5 0.022355 1013.31 7.670 1.39383 2497.41 0.08 0.1 0.0952

Table 3
Critical properties for the equimolar C1/n-C10 mixture use for section 3.2.

Component Tc Pc u Binary
interaction
parameters

K Bar C1 n-C10

C1 190.7 46.0 0.008 0 0
n-C10 617.6 21.1 0.49 0 0

Fig. 2. Phase envelope for the equimolar methane/n-decane mixture (Table 3). The
conditions for section 3.2 are marked by the “þ” sign, 560.9 K and 22.3 bar. The BIP
used are 0 for the solid curve and 0.0158 calculated from Kumar [36] for the dotted
curve.

Fig. 3. Reduced Gibbs free energy, GR, (a) and tangent-place distance (b) for the C1/n-
C10 binary system (Table 3) at 560.9 K for the reference equimolar mixture A at
22.3 bar. Point B is the incipient phase composition at 14.6 bar. Points C and D are
additional stationary points at 14.6 bar and 22.3 bar, respectively.
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Step 5. Calculate Dsp at x. If Dsp < 0, the reference phase xr is
unstable.

If all tested initial guesses do not find the reference phase to be
unstable, it is assumed to be stable. Remarks for some steps are
given here. In Step 2.1, a common choice [19,22] is to use Raoult's
law along with a certain vapor-pressure correlation (e.g., Wilson's
correlation [31]) for either vapor-like or liquid-like phase; however,
other initialization methods have been also proposed [17,20,32]. In
Step 2.2, if there are two real roots, both roots can be tested as
presented by Miky�ska and Firoozabadi [19]. In Step 3.5, the EOS is

used to explicitly compute P by using V. Hence, this algorithm does
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not involve the potential issue associated with the root selection of
a cubic EOS as described in Neshat et al. [28]. Note that P* does not
need to be estimated in Step 3. In Step 5, P* is specified as a scalar
quantity or function. The Young-Laplace and saturation-based
models as given in Appendices A, B, and C represent simplified
correlations that are often used to estimate equilibrium capillary
pressure in porous media for phase behavior calculations
[13e15,21,23e25,28] and are used in the case studies in this paper.
More elaborate models have also been presented in the literature
with the geometrical information of interfaces in a pore network
[33]. In this research, εsp and εts are 10�9 and 10�4, respectively.
Appendix D presents a flow chart of the algorithm.
Fig. 4. (a) Helmholtz free energy (A/RTV) in d space for the binary system given in Table 3 at
of methane and n-decane (Table 3) at 560.9 K and 1.176 L/mol. The purple plane represents t
(Equation (15)). D e DT gives P*/RT.
3. Case studies

The main objective of this section is to demonstrate the main
advantages of using the Helmholtz free energy over the conventional
method using the Gibbs free energy [15] for phase stability analysis
with a curved interface. The thermodynamicmodel used is the Peng-
Robinson EOS [26] with the van derWaalsmixing rules [27]. Volume
shift is not used within this research as it affects the fugacity equa-
tions when equilibrium phases have different pressures [34]. The
conventional method compared with the newmethod here is based
on Neshat et al. [15] with slight modifications. A brief summary of
Neshat et al.’s method is as follows: Step 1. Set the capillary pressure
560.9 K and 1.176 L/mol. (b) TPD function, DT (Equation (15)), for the equimolar mixture
he base plane for D (Equation (10)) and the grey plane represents the base plane for DT



Fig. 5. Phase envelopes for the equimolar mixture of methane and Eagle Ford light oil with and without capillary pressure. Regions I and II represent the conditions for non-
convergence with the conventional methods as described in Section 3.3 while Region III shows the conditions for indefinite solutions. Section 3.3 defines the indefinite solu-
tion when the overall mixture is unstable, but has no two-phase equilibrium solution.

Table 4
Peng-Robinson EOS fluid model for the equimolar mixture of Eagle Ford light oil and methane [37]. This fluid is used for sections 3.3 and 3.4.

Composition Molecular weight Critical pressure Critical temperature Acentric factor Parachor

mole fraction g/mol bar K

N2 0.000365 28.01 33.9349143 126.2 0.04 41
CO2 0.006410 44.01 73.8431786 304.222222 0.225 78
C1 0.656155 16.04 46.3944429 190.7 0.013 77.3
C2 0.021570 30.07 48.8255536 305.427778 0.097 108.9
C3 0.020740 44.1 42.5551214 369.888889 0.152 151.9
i-C4 0.006750 58.12 36.46735 408.111111 0.185 181.5
n-C4 0.016910 58.12 37.9562071 425.222222 0.201 191.7
i-C5 0.009025 72.15 33.3269643 460.388889 0.2223 225
n-C5 0.010705 72.15 33.7419143 469.783333 0.2539 233.9
n-C6 0.023115 86.18 30.3078929 507.888889 0.3007 271
C7-10 0.081485 112 27.7644286 589.166667 0.3739 311
C11-14 0.060020 175 21.2093214 679.777778 0.526 471
C15-19 0.050220 210 16.6393571 760.222222 0.6979 556.3
C20þ 0.036530 250 10.4151071 896.777778 1.0456 836.4
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to 0. Use the stability analysis of Michelsen [3] with no capillary
pressure. If only the trivial solution is obtained, the mixture is
assumed to be stable. Otherwise, go to Step 2. Step 2. Perform a
phase-split calculation at a fixed capillary pressure, and then update
the capillary pressure using the Young-Laplace or saturation-based
model. Step 3. Perform a stability analysis at the given capillary
pressure [3,15,35] and return to Step 2. At convergence, the posi-
tivity/negativity of the TPD at the stationary points given by Step 3
determines the stability/instability of the mixture tested.
3.1. Case 1

Themain objective of Case 1 is to clarify the differences between
this paper and other publications on phase stability analysis with
capillary pressure [21,23]. Kou and Sun [23] presented their
derivation of the phase stability criterion using the Helmholtz free
energy in the presence of capillary pressure, which is quite different
from that in this paper (Section 2.1).

The important consequence of the differences lies in the P*
term. To obtain the result of Kou and Sun [23], this term must be
replaced by gPcap, where g ¼ 1 for a gas phase and g ¼ �1 for a
liquid phase. Then, their stationarity criterion contained the de-
rivative of gPcap with respect to their independent variables, which
are the component mole numbers in the incipient phase. Kou and
Sun's [23] derivation resulted in the statement of Nichita [24] that
Fi ¼ 0 is not the stationarity condition of the D function in d space.

As described previously, use of P* as differential pressure be-
tween two phases necessitates that dAtotal ¼ 0 in d space and,
therefore, Fi ¼ 0 for i ¼ 1, 2,….,NC. That is, only if the stationarity
conditions (i.e., fugacity equations) are satisfied, P* can be specified



Table 5
Non-zero binary interaction parameters for the fluid shown in Table 4 [37]. This fluid
is used for sections 3.3 and 3.4.

N2 CO2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5

N2 0
CO2 �0.02 0
C1 0.036 0.1 0
C2 0.05 0.135 0 0
C3 0.08 0.135 0 0 0
i-C4 0.095 0.13 0 0 0 0
n-C4 0.09 0.13 0 0 0 0 0
i-C5 0.095 0.125 0 0 0 0 0 0
n-C5 0.1 0.125 0 0 0 0 0 0 0
n-C6 0.1 0.125 0 0 0 0 0 0 0
C7-10 0.151 0.111 0.025 0.02 0.015 0.111 0.005 0.005 0.005
C11-14 0.197 0.097 0.049 0.039 0.029 0.097 0.01 0.01 0.01
C15-19 0.235 0.085 0.068 0.054 0.041 0.085 0.014 0.014 0.014
C20þ 0.288 0.07 0.094 0.075 0.056 0.07 0.019 0.019 0.019

Table 6
Capillary pressure parameters used for section 3.3, as given in Neshat et al. [28]. The
equation and parameters are defined in Appendix C. The permeability, Somin and
Sgmin, do not follow Neshat et al. [28]; they were altered to reproduce a similar rock
that presents a more challenging phase behavior calculation.

Sw f k bo bg ao ag Somin Sgmin

mD

3.88 0 0.07 0.1 0.386 �0.193 1.0 0.06 0.05 0.05

S.H. Achour, R. Okuno / Fluid Phase Equilibria 520 (2020) 1126488
by using a capillary-pressure model, for example, by the Young-
Laplace or saturation-based model. Hence, the derivative of the
P* term must be zero for the stationarity conditions of D. This can
be also confirmed when the method in this research is applied to a
phase boundary, at which DSP ¼ 0 at d with xi s xir that satisfies
Equation (11). In essence, the phase stability problem in this
research is to find stationary points of D, and to check for each
stationary point to see if the reference phase is stable or unstable
assuming the identified stationary point and the reference phase
coexist as equilibrium phases (i.e., stationary points satisfy Equa-
tion (11)).

The gPcap term remained in the stationarity conditions derived
by Kou and Sun [23] and Nichita [21]. In the case of Nichita [21], for
example, it is given as

lnfi � lnf ir þ vPcap
�
vdi ¼ 0 (13)

for i¼ 1, 2,….,NC. Therefore, the component fugacities are not equal
between the reference phase and a stationary point found by their
methods, as confirmed in this research. This is likely the reasonwhy
calculation results were inconsistent between Nichita's [21]
method using the Helmholtz free energy and a method using the
Gibbs free energy [14]. Nichita [21] showed in Fig. 1 of his paper
that the dew point curve by his Helmholtz-free-energy method
deviated from the one using the Gibbs free energy for the fluid
“SJ15” taken from Sherafati and Jessen [14]. However, the results for
a given thermodynamic problem must be identical whether the
problem is formulated by minimization of the Helmholtz free en-
ergy or the Gibbs free energy.

The new method developed in this research is used to calculate
dew point curves for the fluid “SJ15” with no curved interface and
with a capillary radius of 10 nm for the Young-Laplace model
(Table 2). The IFT and capillary pressure models used are described
in Appendices A and B. As in their papers, a Parachor exponent of 4
is used. Unlike in Sherafati and Jessen [14] and Nichita [21], the
Peng-Robinson equation of state is used with no volume shift here,
but it is used for both approaches using the Gibbs and Helmholtz
free energy for a fair comparison.

Fig. 1 showed the calculated dew point curves using the new
method and the conventional method using the Gibbs free energy
[15]. The capillary tube's surface is assumed to be liquid-wet;
therefore, capillary pressure causes the two-phase region to
expand in this diagram. The dew-point curve without capillary
pressure is given by the solid line. The dew-point curve for the 10-
nm tube is shown by the bold dashed line for the conventional
method and by hollow circles for the new method using the
Helmholtz free energy. The figure also shows the oil-phase pres-
sures for the phase boundary conditions for the 10-nm tube. As
expected, the new and conventional methods give the identical
results, confirming the consistency between the Helmholtz and
Gibbs formulations.

3.2. Case 2

Unlike the conventional methods using the Gibbs free energy,
the new method involves only a single Helmholtz free energy
surface, which improves the robustness especially for small pores
(i.e., high capillary pressure). The conventional methods involve
two Gibbs free energy surfaces for phase stability analysis: one
fixed energy surface for the reference phase and another iterative
energy surface for the incipient phase. Since the capillary pressure
has to be part of the iterative solution, the conventional methods
tend to fail when they attempt to minimize the total Gibbs free
energy using two Gibbs surfaces with a large capillary pressure.
This case study presents an example to demonstrate the advantage
of using the Helmholtz free energy over the Gibbs free energy.

Table 3 shows the fluid properties for the equimolar mixture of
methane and n-decane. The temperature is 560.9 K and the refer-
ence pressure is 22.3 bar. Fig. 2 shows the P-T diagram in bold with
no capillary pressure for this mixture, in which the condition for
this case study is marked. The dotted envelope shows the phase
envelope using a binary interaction parameter (BIP) obtained by
fitting experimental data [36]. The dew point can be reasonably
approximated without using BIP in this case. The capillary pressure
used for the stability analysis is 7.7 bar. This mixture results in two
phases with the oleic-phase pressure of 14.6 bar at the methane
concentration of 7.88% as presented in Fig. 3a. The Gibbs free energy
is shown by the solid line for the gaseous phase and by the dashed
line for the oleic phase. Points A and B represent the reference and
incipient phases, respectively.

The distance between the tangent line and the Gibbs free energy
in Fig. 3a gives the tangent-plane distance (TPD) as shown in
Fig. 3b. The correct solution of the phase stability problem for the
reference fluid (Point A) is given by the incipient phase given by
Point B. However, Fig. 3b shows a large segment of negative TPD
values with the stationary point C. By observation of the two Gibbs
free energy surfaces in the entire composition space, this stationary
point C can be easily identified as a non-physical part of the Gibbs
free energy for the oleic phase. However, it is challenging for a
computational algorithm to robustly and efficiently exclude such
non-physical parts of the Gibbs free energy surfaces in composition
space for general multicomponent mixtures. The fundamental
cause of this issue is that the Gibbs free energy in composition
space requires a pressure to be specified. This figure clarifies that
the conventional phase-stability analysis using the Gibbs free en-
ergy cannot be applied without ad-hoc modifications [15] to the
phase-stability problems with capillary pressure even for simple
binary mixtures.

Fig. 4a shows the Helmholtz free energy (A/VRT) for hypotheti-
cally single-phase mixtures (Table 3)



Fig. 6. Convergence behavior of the new algorithm for the mixture given in Tables 4 and 5 at 700 K and the reference phase pressure of 50 bar.

Fig. 7. Pressure-volume curve of the PR EOS when the conventional method failed to solve the EOS for the liquid phase at �4.056 bars during the phase stability analysis for the
mixture given in Tables 4 and 5 at 700 K and the reference phase pressure of 50 bar. The new method rapidly converges for this phase stability problem as presented in Fig. 6.
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A=VRT ¼ d1 lnf1 þ d2 lnf2 � P=RT (14)

in d space at 560.9 K. The vertical axis has a unit of molar density,
mol/L. The labels dC1 and dC10 represent the component molar
densities of methane and n-decane, respectively, with the unit of
mol/L. The non-linearity of the A/VRT surface is not obvious in
Fig. 4a, but it is clearly shown that only one function spans the
d space. This surface inherently contains the pressure variability
given by the fixed temperature and the variable composition

xi ¼ di=
PNC

j¼1
dj (i ¼ 1,…,NC) and molar volume V ¼ 1=

PNC

j¼1
dj in the

d space.
More details of the Helmholtz free energy function in d space

are described because it is important to have a graphical



Fig. 8. Convergence behavior for the equimolar mixture of the mixture given in Tables 4 and 5 in region II at 680 K and the reference phase pressure of 170 bar; (a) Rapid
convergence behavior of the new algorithm (“residual” is defined in Section 2.2), (b) Non-convergence of the phase-split calculation as part of the conventional method using the
Gibbs free energy.
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understanding of the function. It is straightforward to derive the
expression for the tangent plane onto the A/VRT surface defined at
the reference phase by repeating the derivation given in Section 2.1
with dAs ¼ 0. The result corresponds to the determinant for phase
stability analysis with no curved interface using the Helmholtz free
energy, which is the TPD function as given by
DT ¼
"XNC

i¼1

ðGi �GirÞdi �ðP�PrÞ
#,

RT: (15)

Fig. 4b shows the DT function for this case. The reference phase
is given by (dC1, dC10)¼ (0.284, 0.284) mol/L and the incipient phase
is (dC1, dC10) ¼ (0.226, 2.65) mol/L. The reference and incipient



Fig. 9. Helmholtz and Gibbs free energy shadow-phase regions with the SJ15 oil
mixture (Table 2). Points A, B, and C at 366.5 K are used for the calculations for Fig. 10.
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phases are the ones indicated by points A and B in Fig. 3, respec-
tively. Comparing Equations (10) and (15) indicates that P*= RT ¼
D� DT at the incipient phase, which is 0.165 mol/L in this case. The
distance between the DT surface and the purple plane represents
the value of D at the stationary point. In this case, the DT surface is
tangent to the purple plane indicating that the reference phase is at
equilibrium with the incipient phase.

3.3. Case 3

This section shows that the new method solves two types of
inherent difficulties with the conventional methods using the
Fig. 10. Oil phase mole fractions calculated at 366.5 K at three different pressures, Points A, B
Point B, and 124.1 bar for Point C at the temperature of 366.5 K as indicated in Fig. 9.
Gibbs free energy. The example used is based on the equimolar
mixture of methane and an Eagle Ford oil [37] as shown in Fig. 5 (no
volume shift is used). The fluid properties are given in Tables 4 and
5. Phase boundaries are calculated by using the new method with
no capillary pressure and with the saturation-based capillary
pressure. The capillary pressure model [28] used in this section is
described in Appendix C. It uses a Leverett-J scaling function to
represent the experimental data [38]. The parameters used for the
calculations correspond to the model that was fit to tight rock
sample 2 [28] as given in Table 6. The permeability, Somin, and Somax
were changed from the original model [28] to increase the capillary
pressure as a necessity to illustrate regions of failure of the con-
ventional algorithm using the Gibbs free energy [15] on a PT phase
envelope. Regions I and II in Fig. 5 represent the conditions for non-
convergence with the conventional methods as described below.
Region III shows the conditions of indefinite solutions within the
two-phase region.
3.3.1. Region I
In Region I, the conventional method results in non-convergence

because of the overshoot of the iterative capillary pressure. This
example is presented for the mixture (Tables 4 and 5) at 700 K and
the reference phase pressure of 50.0 bar. The newmethod converges
rapidly as shown in Fig. 6 with DSP ¼ �1:542 mol/L < 0 indicating
that the reference phase is unstable. The conventional method using
the Gibbs free energy results in non-convergence when it attempts
to solve the EOS for the liquid phase at �4.056 bar. This pressure is
lower than theminimumpressure on the pressure-volume isotherm
for the liquid composition as shown in Fig. 7. At equilibrium, the
liquid pressure is 29.84 bar.

The new method has no such overshoot problems because it
does not involve the iterative capillary pressure as shown in Section
2.2. Also, it uses the minimization algorithm with the linear con-
straints, b$d<1:0. It is a standard procedure that keeps the iterate
feasible in the algorithm, as used also by Nichita [21,22].
, and C given in Fig. 9. The reference phase pressure is 151.7 bar for Point A, 137.9 bar for



Fig. 11. Helmholtz and Gibbs free energy shadow-phase regions for the equimolar mixture of Eagle ford light oil and methane (Tables 5 and 6); (a) pressure-temperature diagram
with the shadow-phase regions; (b) a magnified view for the dew-point side of Fig. 11a. Points D, E, and F at 34.5 bar are used for the calculations for Fig. 12.
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3.3.2. Region II
In Region II, the conventional method results in non-

convergence because of the absence of any solution to the phase-
split calculation as part of phase stability analysis. In previous
studies [13,15], the fluid was assumed to be stable when their phase
stability analysis methods resulted in this type of non-convergence.
However, Fig. 5 clearly shows that Region II exists even within the
two-phase envelope. The robustness of the new method enables to
demonstrate for the first time that phase stability problems with
capillary pressure can yield indefinite solutions as described below.

A specific example is given using the samemixture (Tables 4 and
5) at 680 K and the reference phase pressure of 170 bar. The new
method converges rapidly to the solution with DSP ¼ �0:1046
mol/L < 0 indicating the instability of the reference phase. Fig. 8a
shows the convergence behavior that is quadratic near the solution.

The conventional method using the Gibbs free energy shows
non-convergence as shown in Fig. 8b. The main reason for this non-
convergence is that the iterative capillary pressure, 20.8 bar, ex-
ceeds the capillary pressure, 19.9 bar, at which the iterative liquid-
like incipient phase is located at a spinodal point on the Gibbs free
energy.With a capillary pressure greater than this limit, no solution
exists for two-phase split calculation as explained in Refs. [12,13].
For this specific example, however, the capillary pressure at the
equilibrium solution, 16.3 bar, is less than the limiting value of



S.H. Achour, R. Okuno / Fluid Phase Equilibria 520 (2020) 112648 13
19.9 bar.

3.3.3. Region III
Region III in Fig. 5 shows the conditions at which the equilib-

rium capillary pressure is greater than the limiting value inside the
two-phase region. This example demonstrates for the first time that
indefinite situations can occur even inside a two-phase envelope.
The new method indicates this type of indefinite situations, where
the fluid is unstable (DSP < 0), but has no solution of two equilib-
rium phases. It is important to recognize that the P* term depends
not only on the phase properties, but also on local details of the
interface that may not be described rigorously by a simple capillary
pressure model.

3.4. Case 4

The TPD function of Michelsen [3] gives a stationary point
with a negative TPD value inside the two-phase region. In a
single-phase region of pressure, temperature, and composition
space, however, the TPD function exhibits either a stationary
point with a positive TPD value or no stationary point except for
the reference phase (i.e., the trivial solution). The thermody-
namic conditions for such stationary points with positive TPD
values were referred to as a “shadow-phase region” [39]. Such a
shadow-phase region occurs between the two-phase region and
the region of no non-trivial stationary point. Rasmussen et al.
[39] proposed a method to not perform phase stability analysis
outside of the shadow phase region during EOS compositional
flow simulation for computational efficiency.

In the presence of capillary pressure, however, this shadow-phase
region defined by the Gibbs free energy becomes irrelevant because
theGibbs free energy is defined for a givenpressure and temperature.
That is, it does not describe the effect of any pressure difference be-
tween phases on the shadow-phase region. This section presents for
the first time that the shadow-phase region in the presence of
Fig. 12. Oil phase mole fractions calculated at 34.5 bar at three different temperatures, Point
and 727.6 K for Point C at the reference-phase pressure of 34.5 bars as indicated in Fig. 11b
capillary pressure is properly defined by the Helmholtz free energy
and potentially useful for computationally efficient flow simulation.

The example used is based on the “SJ15” fluid (Table 2) as
shown in Fig. 9. The solid line shows the phase boundary with no
capillary pressure. The thin dashed line shows the outer
boundary of the Gibbs shadow-phase region by Rasmussen et al.
[39] (i.e., no capillary pressure is considered). The bold dashed
line shows the outer boundary of the Helmholtz shadow-phase
region using the new method. The difference between the two
shadow-phase regions shows the substantial effect of capillary
pressure. Fig. 9 shows that the Gibbs shadow-phase region is
enclosed by the Helmholtz shadow-phase region for the bubble-
point side and the other way around for the dew point side.
However, this observation is not general as confirmed in other
cases (including the next case shown below). Fig. 9 shows three
selected points, A, B, and C at 366.5 K, for which phase-split
calculations are performed with different capillary pressures.
Fig. 10 shows the resulting oil-phase mole fractions for Points A,
B, and C for different capillary pressures. The results of phase-
split calculations for point A clearly show that two-phase equi-
librium is possible with a capillary pressure outside the Gibbs
shadow phase region, demonstrating the inapplicability of the
Gibbs shadow-phase region in the presence of capillary pressure.

Fig. 11 shows another example using the mixture given in
Tables 4 and 5 Fig. 11a presents the two-phase boundary with a
solid line, the outer boundary of the Gibbs shadow-phase region
with a thin dashed line, and the outer boundary of the Helmholtz
shadow-phase region with a bold dashed line. Fig. 11b shows three
selected points, D, E, and F, at 34.5 bar, for each of which phase-split
calculations are performed with different capillary pressures.
Fig. 12 shows the resulting gas-phase mole fractions for Points D, E,
and F for different constant capillary pressures. The hollow circle
for each curve corresponds to the capillary pressure beyond which
no solution exists for the phase-split calculations (positive and
negative flash). Point A is on the edge of the Gibbs shadow-phase
s A, B, and C given in Fig. 11b. The temperature is 752.6 K for Point A, 741.4 K for Point B,
.
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region (see Fig. 11b), but no capillary pressure value allows for a
stable two-phase solution at this condition. Point B is on the edge of
the Helmholtz shadow-phase region (Fig.11b) and has a stable two-
phase solution only with the capillary pressure of 34.5 bar. Point C
is located deep inside the Helmholtz shadow-phase region in
Fig. 11a. There is a range of capillary pressures that make stable
two-phase solutions as shown by the solid line in Fig. 11b. Another
example of this situationwas presented previously in Fig. 4b for the
simple binary system (Table 3). The DT function shows a stationary
point that is not the reference phase because it is inside the
Helmholtz shadow-phase region.
4. Conclusions

This paper presented a new formulation and algorithm for
phase stability analysis for tight porous media using the Helmholtz
free energy. The effect of a curved interface on phase stability was
rigorously considered in the formulation and algorithm developed.
Case studies were presented to highlight the main differences be-
tween the new method and recently proposed methods of phase
stability analysis. Conclusions are as follows:

� Results in this paper demonstrated the inherent consistency
between the Gibbs-based and the Helmholtz-based formula-
tions for phase stability analysis in the presence of capillary
pressure. It is important to recognize and implement in the al-
gorithm that the term “� ðP � PrÞ þ P*” becomes zero only if
dAtotal ¼ 0 for any perturbation of d; i.e., an equilibrium state.

� The conventional methods using the Gibbs free energy cause
various difficulties in phase stability analysis with capillary
pressure. Application of the traditional TPD analysis using the
Gibbs free energy gives a region of negative TPD values because
of a non-physical part of the Gibbs free energy for the lower-
pressure phase. The fundamental cause of this issue is that the
Gibbs free energy in composition space requires a pressure to be
specified.

� Another type of difficulty with the conventional methods is
when phase-split calculations do not converge as part of the
phase stability analysis with capillary pressure. Cases were
presented for the overshoot of the iterative capillary pressure
and non-existence of two-phase solution with a high capillary
pressure.

� The newmethod using the Helmholtz free energy does not have
the issues mentioned in items 2 and 3 above. The new method
only involves one Helmholtz free energy surface in the variable
space, in which the variability of pressure is inherently consid-
ered. Unlike the conventional methods, the new method re-
quires neither the iterative capillary pressure nor phase-split
calculations.

� It is shown for the first time that there exist indefinite situations
in phase stability analysis with capillary pressure, in which the
fluid is unstable, but has no solution of two equilibrium phases.
This indefinite solution is related to the description of the P*
term as shown in Section 2.1. This P* term depends not only on
the equilibrium phase properties, but also on local details of the
interface that may not be described rigorously by a simple
capillary pressure model.

� It is demonstrated for the first time that the shadow-phase re-
gion in the presence of capillary pressure can be defined with
the Helmholtz free energy. Case studies show that the tradi-
tional shadow-phase region based on the Gibbs free energy is
invalid in the presence of capillary pressure.
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Nomenclature
Roman symbols
ao Saturation-based capillary pressure parameter defined

in Appendix C
ag Saturation-based capillary pressure parameter defined

in Appendix C
a Interfacial area
A Helmholtz free energy
bo Saturation-based capillary pressure parameter defined

in Appendix C
bg Saturation-based capillary pressure parameter defined

in Appendix C
bi Co-volume parameter for the Peng-Robinson equation

of state
b Vector containing the co-volume parameter for the

Peng-Robinson equation of state
dij Molar density for component i in phase j
d Vector containing the component molar densities
D Stability determinant function defined in section 2.1
DT Stability determinant function defined in section 3.2
f ij Fugacity of component i in phase j
Fi ith stationarity condition for the D function defined in

section section 2.1
g Gradient of the D function
G R Dimensionless molar Gibbs free energy
H Hessian matrix
k Permeability of a porous medium
Nc Number of components
P Pressure
P* Term defined in section 2.1
Pcap Capillary pressure
r Residuals used to determine convergence
R Ideal gas constant
R Capillary tube radius
Sj Volumetric saturation for phase j
T Temperature or equation for the tangent plane to a

surface
V Volume
V Molar volume
xij Mole fraction for component i in phase j
x Vector containing component mole fractions in a

mixture

Greek letters
g Parachor exponent
g Phase-dependent parameter in the TPD derived by Kou

and Sun [23]
dij Independent variable for stability analysis for

component i in phase j
d Vector containing independent variable for stability

analysis for all the components
ε Tolerance for convergence criterion
q Contact angle
l Step-size for minimization algorithm
Pi Parachor coefficient for component i
rj Mass density for phase j
s Interfacial tension or other interfacial property when

used as a subscript
f Porosity of a porous medium
Superscripts
k Index for iteration steps
Subscripts
g Gas
L Liquid
min Minimum
o Oil
r Reference
R Reduced
SP Stationary point
t Trial phase
total Total mixture property
T Negligible interfacial energy
w Water
Abbreviations
BIP Binary interaction parameters
EOS Equation of state
IFT Interfacial tension
PR Peng-Robinson
PT Pressure-temperature
TPD Tangent-plane distance
TV Temperature-volume
Appendix E. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.fluid.2020.112648.
Appendices

Appendix A. Interfacial tension model

The parachor model is used to compute the liquid-vapor IFT.
This model is based on the critical scaling theory and has been
demonstrated to accuratelymodel oil and gas IFT by several authors
[48e50]. It can be written as

s ¼
 XNc

i¼1

PiðdiL � diVÞ
!g

; (A-1)

where Pi and g are the parachor coefficient for component i and
the parachor exponent. The parachor exponent was estimated to be
3.88 by Schechter and Guo [50] with a comprehensive dataset.
Schechter and Guo's value is used for most of our example cases.
Appendix B. Young-Laplace capillary pressure

The Young-Laplace capillary pressure model assumes that the
rock behaves as a bundle of tubes with a chemically uniform sur-
face and constant capillary radius R .

https://doi.org/10.1016/j.fluid.2020.112648
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Pcap ¼ 2s cosq
�
R ; (B-1)

where q is the contact angle between the rock surface and the
liquid-vapor interface. It is measured through the denser phase
[51]. Reservoir rocks are often liquid-wet, for which cosq is positive.

When the Young-Laplace model is used for phase behavior
calculations for tight porous media, the porous medium is assumed
to be a bundle of capillary tubes with a uniform capillary radius and
wettability. This seems to be the most frequently used capillary
pressure model in the literature. However, this model does not
represent real rocks, which have complex heterogeneous wetta-
bility and pore structure. The value of the capillary pressure de-
pends on the location of the interface inside the heterogeneous
porous medium of interest.

Appendix C. Saturation-based capillary pressure

The Young-Laplace model does not account for a pore size dis-
tribution and wettability heterogeneity. Two solutions are available
that include these important effects: pore-network simulations
(PNS) and saturation-based models. In PNS methods, the structure
of the porous medium is used to include the path-dependency from
dynamic imbibition [33] or incipient phase appearance. However,
they are not commonly used in reservoir simulators because of
their computational cost.

An alternative approach to modeling capillary pressure in a real
rock is to use a correlation to relate capillary pressure to the posi-
tion of the interface in the porous medium through the phase-
saturations. It is also possible to model path-dependency in reser-
voir simulation with these functions [52]. The capillary pressure
can also be scaled for varying fluid and rock properties using Lev-
erett J-type functions [53]. A saturation-based model, which takes
into account all the effects mentioned above, was presented by
Neshat et al. [28] as follows:

PcapðSoÞ ¼ s
ffiffiffiffiffiffiffiffi
f=k

q �
bo
.
ðSo þ SwÞao þ bg

.�
Sg
�ag 	; (C-1)

where f and k are respectively the porosity and the permeability of
the porous medium. The parameters ao, bo, ag, and bg are fitting
parameters, which allow the user to fit themodel to experimentally
measured capillary pressure data. The parameters So, Sw, Sg are the
oil, water, and gas volumetric phase saturations.

One aspect of these saturation based capillary pressure models
is that they increase asymptotically near residual saturations. In
order to avoid calculating infinite capillary pressures, Neshat at al
[11]. suggested using a maximum value corresponding to the
Young-Laplace capillary pressure at the minimum measurable
pore-size R min. The maximum pore size R max can also be used to
limit the minimum value of the capillary pressure. Hence the oil
saturations used for capillary pressure vary from Somin to 1� Sgmin,

where PcapðSominÞ ¼ 2=R min and Pcap
�
Sgmin

� ¼ 2=R max.

Appendix D. Flow chart for the phase stability analysis using the
Helmholtz free energy
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