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Summary

The conventional method for multiphase flash is the sequential usage of phase-stability and phase-split calculations. Multiphase flash
requires the conventional method to obtain multiple false solutions in phase-split calculations and correct them in phase-stability analy-
sis. Improvement of the robustness and efficiency of multiphase flash is important for compositional flow simulation with complex
phase behavior.

This paper presents a new algorithm that solves for stationary points of the tangent-plane-distance (TPD) function defined at an equi-
librium-phase composition for isobaric-isothermal (PT) flash. A solution from the new algorithm consists of two groups of stationary
points: tangent and nontangent stationary points of the TPD function. Hence, equilibrium phases, at which the Gibbs free energy is tan-
gent to the TPD function, are found as a subset of the solution.

Unlike the conventional method, the new algorithm does not require finding false solutions for robust multiphase flash. The advant-
age of the new algorithm in terms of robustness is more pronounced for more-complex phase behavior, for which multiple local minima
of the Gibbs free energy are present. Case studies show that the new algorithm converges to a lower Gibbs free energy compared with
the conventional method for the complex fluids tested. It is straightforward to implement the algorithm because of the simple formula-
tion, which also allows for an arbitrary number of iterative compositions. It can be robustly initialized even when no K value correlation
is available for the fluid of interest. Although the main focus of this paper is on robust solution of multiphase flash, the new algorithm
can be used to initialize a second-order convergent method in the vicinity of a solution.

Introduction

A multiphase equilibrium calculation for a fixed pressure (P) and temperature (T) requires global minimization of the Gibbs free energy
subject to material balance. The conventional algorithms after Michelsen (1982a, b) are based on the sequential usage of phase-stability
and -split calculations. That is, a phase-stability calculation is performed for the overall composition specified or one of the phases from
a multiphase solution, at which the plane tangent to the Gibbs free energy surface is defined. If it detects phase instability, a phase-split
calculation is performed under the assumption that one more equilibrium phase is present.

For instance, calculation for three equilibrium phases starts with testing the stability for the overall composition specified. Once
phase instability is detected, a two-phase-split calculation is conducted for the overall composition. Then, phase stability is tested for
one of the two phases obtained from the two-phase flash. After detecting the instability of the two-phase solution, a three-phase-split
calculation is performed. Finally, one of the three phases is used to test the stability of the three-phase solution.

There are many algorithms presented in the literature for each of the phase-stability and -split calculations for an assumed number
of phases. Successive substitution is the classical algorithm used for each of the phase-stability and -split calculations. It is linearly con-
vergent for nonideal mixtures, but known to be reliable (Mehra et al. 1983; Ammar and Renon 1987; Kaul 1992; Pan and Firoozabadi
2003; Michelsen and Mollerup 2004). Therefore, it is commonly used to provide an initial estimate for higher-order methods to achieve
the final convergence (Mehra et al. 1982; Michelsen 1982b; Nghiem et al. 1983; Ammar and Renon 1987; Pan and Firoozabadi 2003).

Various algorithms were developed and compared for phase-split calculations for an assumed number of phases and phase-stability
testing (Gautam and Seider 1979; Ohanomah and Thompson 1984; Lucia et al. 1985; Trangenstein 1985, 1987; Ammar and Renon
1987; Litvak 1994; Teh and Rangaiah 2002), such as interval methods (Hua et al. 1996, 1998a, b; Xu et al. 2000; Tessier et al. 2000;
Xu et al. 2002; Burgos-Solórzano et al. 2004; Xu et al. 2005) and trust-region methods (Nghiem et al. 1983; Lucia and Liu 1998; Lucia
and Yang 2003; Lucia et al. 2012). A widely used algorithm is minimization of the Gibbs free energy by use of Newton’s method with
a line-search technique, in which the modified Cholesky decomposition of Gill and Murray (1974) is used to provide a search direction
when the Hessian matrix is not positive-definite (Michelsen 1982a, b; Perschke et al. 1989). A popular quasi-Newton method is the
Broyden-Fletcher-Goldfarb-Shanno method (Broyden 1970a, b; Fletcher 1970; Goldfarb 1970, 1976; Shanno 1970; Lucia et al. 2000)
for an inverse of the Hessian matrix approximation. Lucia and Macchietto (1983) and Venkataraman and Lucia (1986, 1987) developed
a thermodynamically consistent quasi-Newton method on the basis of Lucia and Macchietto (1983).

The sequential use of phase-stability and -split calculations has been successfully applied for various compositional flow problems in the
literature (e.g., Mehra et al. 1983; Nghiem and Li 1984; Perschke 1988; Han and Rangaiah 1998), and is called the conventional approach in
this paper. However, it is a series of local solutions for assumed numbers of phases, which requires obtaining and correcting false solutions
for multiphase problems. Correction of false solutions in phase-stability analysis is highly sensitive to the initial guess used for the search for
potential equilibrium phases. Also, it is not always possible to obtain a reasonable set of initial K values for multiphase reservoir fluids.

For example, three different types of two equilibrium phases (L1þV, L1þL2, and L2þV) exist in composition space that contains three equi-
librium phases (L1þL2þV), where L1, L2, and V stand for the oleic, solvent-rich liquid, and gaseous phases, respectively. When L1þL2 or L2þV
is of the global minimum in the Gibbs free energy at the specified flash conditions, the conventional algorithms started with Wilson’s correlation
(Wilson 1969) often fail to converge to the correct solution, or tend to be attracted by local minima before reaching it through negative flash
(see Case 4 in this paper). However, no method has been established to estimate K values for a hydrocarbon mixture involving the L2 phase.
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One way to improve the robustness of multiphase flash is to use multiple initial guesses in a series of phase-stability analyses, as
given in Michelsen (1982b), Perschke (1988), and Li and Firoozabadi (2012). However, it still requires obtaining and correcting false
solutions, which are often near local minima of the Gibbs free energy subject to material balance. As will be shown in this paper, many
stability calculations with different initial K values may be required to obtain merely a false solution in multiphase flash.

Gupta et al. (1991) presented a novel methodology to perform phase-stability and -split calculations simultaneously. In their algo-
rithm, the Rachford-Rice (RR) and stability equations were solved simultaneously for phase amounts and “stability variables” by use of
Newton’s method for root finding. The stability equations of Gupta et al. (1991) indicate that either the stability variable or the phase
amount of an individual phase is zero at the global minimum of the Gibbs free energy. The stability variables of Gupta et al. (1991)
were derived from the first-order condition for unconstrained minimization of the Gibbs free energy as formulated by them. K values
were then updated in the outer loop by successive substitution. Unlike conventional successive substitution, however, the flash algo-
rithm of Gupta et al. (1991) involves the simultaneous root-finding of the RR and stability equations, which can cause convergence
issues, as discussed below.

Various issues with the Gupta et al. (1991) algorithm were reported in previous papers, and have also been identified in the current
research. First, researchers (Abdel-Ghani 1995; Alsaifi and Englezos 2011) reported numerical issues associated with the degeneracy of
equations (called “stability equations” in their papers) near phase boundaries on the basis of the Gupta et al. (1991) formulation. Sec-
ond, the initialization scheme they proposed often results in K values that give an unbounded feasible region for the RR solution. As
proved in Okuno et al. (2010a), such an RR problem has no solution, which stops the flash calculation from proceeding. Even if it is
successfully initialized, the original algorithm of Gupta et al. (1991) may not be robust because it does not check the feasibility of each
RR solution during the iteration. Third, it is not clear how their algorithm selects the reference composition that is required to set the
system of equations to be solved. It is likely that negative phase amounts are used as the indicator for improper selection of the refer-
ence composition, as mentioned in Alsaifi and Englezos (2011).

Alsaifi and Englezos (2011) used the trust-region-Gauss-Newton method with the original formulation of Gupta et al. (1991). It was
reported that, unlike the algorithm of Gupta et al. (1991), their algorithm did not encounter convergence issues near phase boundaries.
However, no comparison was given between the two algorithms. It is not entirely clear how the reported improvement was achieved.
The algorithm developed by us in this research does not require the equations [called “stability equations” in Gupta et al. (1991)] that
caused the convergence issues near phase boundaries.

Chaikunchuensakun et al. (2002) also proposed a simultaneous solution of phase-stability and -split calculations on the basis of min-
imization of the Gibbs free energy. They used a quasi-Newton method with an approximate Hessian matrix rather than an analytical
one. Use of pseudocritical properties of the fluid of interest was proposed for identification of the states of the reference and potential
equilibrium phases. If the ratio of the system pressure to the pseudocritical pressure of the fluid is greater than a value that is heuristi-
cally determined (e.g., 1.0, as used in their paper), the fluid is identified as a liquid; otherwise, the mixture is a vapor. However,
Chaikunchuensakun et al. (2002) stated that their algorithm is only for local minimization, and does not attempt to search for a global
solution for multiphase PT flash. Also, it is not clear why the phase identification is required in their algorithm.

This paper presents the correct set of equations and constraints that can be easily solved for simultaneous phase-stability and -split
calculations for PT multiphase flash. The formulation does not require the stability equations that the algorithm of Gupta et al. (1991)
and its variants (Abdel-Ghani 1995; Chaikunchuensakun et al. 2002; Alsaifi and Englezos 2011) used. The main novelty of our work is
in the unified use of the TPD function (Baker et al. 1982; Michelsen 1982a) for PT multiphase flash for an arbitrary number of iterative
compositions. It allows for flexibility in terms of the amount of information regarding the Gibbs free energy used during the iterative so-
lution by controlling the number of iterative compositions initialized. A new algorithm is developed on the basis of successive substitu-
tion augmented with some important steps for global convergence for the formulated PT multiphase flash. Case studies are given to
demonstrate the robustness of the developed algorithm.

Algorithm

Global minimization of the Gibbs free energy in composition space for PT flash is formulated such that all stationary points of the TPD
function defined at the overall composition specified or one of the equilibrium phases must be nonnegative. This is a direct representa-
tion of the classical criterion for phase equilibrium, as explained in Baker et al. (1982). As shown in the formulation presented in Ap-
pendix A, the TPD function is used in a unified manner for all stationary points of the TPD at an equilibrium state, which consist of
tangent stationary points (i.e., equilibrium phase compositions with zero TPD) and the other stationary points (i.e., compositions with
positive TPD values). That is, equilibrium phases are considered as a subset of TPD stationary points in the new formulation (Appendix
A). Then, multiphase PT flash is used to find a plane tangent to the Gibbs free energy such that it does not lie above the Gibbs free
energy at all stationary points identified. In what follows, we first show working equations and then a stepwise description of the algo-
rithm. The corresponding flow chart is given in Appendix B.

The algorithm developed to solve the formulated problem (Appendix A) does not require the number of equilibrium phases to be set
before the iteration. It aims to find stationary points of the TPD function defined at one of the equilibrium phases upon convergence.
Iterative compositions are distributed in composition space in the initialization step, and they search for stationary points along the
search directions determined by traditional successive substitution. That is, the algorithm uses the TPD equation

fij ¼ lnðxijuijÞ � lnðxiruirÞ � hj ¼ 0 ð1Þ

to update all iterative compositions xij(i¼ 1, 2, …, NC and j¼ 1, 2, …, NS) through K values by use of successive substitution. In Eq. 1,
NC is the number of components and NS is the number of iterative “sampling” compositions that capture thermodynamic information in
composition space during the iteration. The fugacity coefficient of component i at sampling composition j is denoted as uij.

It is important to note that the equations and variables used in the algorithm given in this section correspond to those in the formula-
tion (Appendix A) only upon convergence, because the formulation is based on an equilibrium state. For example, hj¼DRj (Eq.
A-14) at an equilibrium state upon convergence. The number of iterative sampling compositions becomes the number of stationary
points upon convergence, but both are denoted as NS in this paper. The reference composition xir (i¼ 1, 2, …, NC) is one of the sam-
pling compositions during the iteration, and becomes one of the tangent stationary points upon convergence.

As stated in Appendix A, NP equilibrium phases satisfy DRj¼ 0 along with Eqs. A-2, A-3, and A-4 for j¼ 1, 2, …, NP. The other NU

stationary points satisfy DRj> 0 and Eq. A-4 for j¼ (NPþ1), (NPþ2)…, NS, where NS¼NPþNU. During the iteration, NS sampling com-
positions belong to either set P or U. In set P, hj¼ 0 and bj> 0 for j¼ 1, 2,…, NP. In set U, hj> 0 and bj¼ 0 for j¼ (NPþ1), (NPþ2)…,
NS. Upon convergence, the sampling compositions in set P correspond to equilibrium phases, and sampling compositions in set U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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correspond to stationary points of the converged TPD function, at which DR values are positive. In other words, the converged sampling
compositions in set P are tangent stationary points and those in set U are nontangent stationary points.

Successive substitution is performed to solve Eq. 1 together with Eqs. A-2, A-3, and A-4 for K values, which are defined as

Kij ¼ xij=ðehj xirÞ ð2Þ

for i¼ 1, 2, …, NC, and j¼ 1, 2, …, NS, except for the reference, r. The reference composition xr is selected from set P adaptively, as
described later.

For set P, Eq. 2 becomes Kij¼ xij/xir. The conventional RR equations give the relationship between K values and mole fractions of
apparent phases (bj) as follows:

gj ¼
XNC

i¼1
ðxir � xijÞ ¼

XNC

i¼1
ð1� KijÞzi=ti ¼ 0 ð3Þ

for sampling point j= r within set P, where ti ¼ 1�
XNP

k¼1;k 6¼r
ð1� KikÞbk for i¼ 1, 2, …, NC. Compositions are given as xir¼ zi/ti and

xij¼Kijxir for sampling point j= r.
For set U, the summation constraint Rixij¼ 1.0 gives

hj ¼ �ln
XNC

i¼1
Kijxir

h i
ð4Þ

for sampling composition j within set U. Compositions for set U are given as xij ¼ ehj Kijxir for i¼ 1, 2, …, NC.
The fundamental structure of the current algorithm broadly follows the traditional successive substitution algorithm, but phase-

stability and -split calculations are performed in an integrated manner. That is, each iteration first solves Eq. 3 for compositions for set
P for a given set of K values and overall composition. Then, Eq. 4 is used to obtain compositions for set U for a given set of K values
and reference composition. After that, K values are updated for sets P and U by use of Eqs. 1 and 2:

lnKij ¼ lnuir � lnuij: ð5Þ

One of the most important factors that affect global convergence of the algorithm is how iterative sampling compositions are distrib-
uted in composition space (e.g., the number of initial sampling compositions and their locations). Sampling compositions can be initial-
ized by use of a correlation suitable for the fluid of interest, such as Wilson’s correlation, Li and Firoozabadi (2012), and Zhu and
Okuno (2015, 2016); or use of certain information from the previous timestep in flow simulation; or use of tie-simplex information in
composition space (Iranshahr et al. 2010); or a systematic distribution in composition space if no reliable information is available
regarding equilibrium phase compositions. Ideally, they are supposed to converge to all stationary points of TPD so that the global min-
imum of the Gibbs free energy is ensured upon convergence. Such a possibility is generally expected to increase as more sampling com-
positions are used, unless they are placed close to each other. As an example for the fourth type of initialization, Appendix C describes
the initialization method used in the case studies in this paper, which systematically distribute sampling compositions in composition
space. Obviously, there are many other distributions that are equally applicable for engineering applications.

In general, flash calculation is more efficient when it is initialized with certain reliable information available for expected equilib-
rium phases. In case studies in this research, the fourth type of initialization is used because they are all standalone multiphase flash. In
one of the case studies, however, the new algorithm is tested with Wilson’s correlation, and is shown to efficiently find a lower Gibbs
free energy than the conventional sequential method.

Other important steps for enhanced robustness include the feasibility check for each RR solution by use of the method of Okuno
et al. (2010a). The constraint, aT

i b � bi, where ai¼ {1–Kij}, b¼ {bj}, bi¼min{1–zi, minj{1–Kijzi}} for i¼ 1, 2, …, NC, is to be satisfied
for compositions in set P if there exists a bounded feasible region for each RR solution, as described in Okuno et al. (2010a). Also, the
constraints regarding bj and hj described previously are used for classification of sampling compositions for sets P and U during
the iteration.

The Peng and Robinson (PR) equation of state (EOS) (Peng and Robinson 1976, 1978) with the van der Waals mixing rules is used
to calculate thermodynamic properties in this research. A stepwise description of the algorithm used in this paper is given here.

Step 1. Set NS sampling compositions x
ðkÞ
j for j¼ 1, 2,…, NS. The number in the parentheses represents the iteration step number;

k¼ 1 for the initial step.
Step 2. Calculate DRj for j¼ 1, 2,…, NS with zi as the reference composition by use of Eq. A-13. Select the sampling composition

with the minimum DR value as the reference composition, x
ð1Þ
r . Calculate K values, K

ð1Þ
j , by use of lnKij ¼ lnuir � lnuij for i¼ 1, 2, …,

NC and j¼ 1, 2,…, NS except for r. Recalculate DRj with x
ð1Þ
r , and set NU as the number of sampling compositions with positive D values.

NP¼NS–NU. If NP>1, continue to Step 3.

If NP¼ 1, select z as x
ð1Þ
r . This increases NS by one because z becomes part of the sampling compositions. Calculate K

ð1Þ
j , DRj, NU,

and NP as described previously. If NP¼ 1, go to Step 6; otherwise, go to Step 3.
Step 3. Check the feasibility of the RR solution for set P by use of the method of Okuno et al. (2010a). If feasible, go to Step 5.

Otherwise, continue to Step 4.
Step 4. Exclude from set P as many sampling compositions as required until the feasibility is satisfied for the given RR problem.

Update NP. NU¼NS–NP. If NP¼ 1, go to Step 6. Otherwise, continue to Step 5.

Step 5. Perform the convex minimization to obtain x
ðkÞ
j and bðkÞj for set P that satisfy Eq. 3, as presented in Okuno et al. (2010a).

The convergence criterion is that kgjk1 < eg. eg¼ 10�10 is used in this research, but it can be a larger number for practical applications.

Step 6. Obtain x
ðkÞ
j and hðkÞj for set U by use of Eq. 4.

Step 7. Check to determine whether there is any hðkÞj that is negative in set U. If so, select the sampling composition that has the
minimum hj value as~xr, and update NU. NP¼NS–NU. Go to Step 10. Otherwise, continue to Step 8.

Step 8. Check to determine whether there is any bðkÞj that is negative in set P. If so, select the sampling composition with
0< bj< 1 as xr and update NU. NP¼NS–NU. Go to Step 10. Otherwise, continue to Step 9.

Step 9. Check for convergence. Stop if k f ijk1 < ef . In this research, ef¼ 10�10 is used, but it can be a larger number for practical
applications. Otherwise, continue to Step 10.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Step 10. Check to determine whether there are any compositions to be merged on the basis of the criterion that the maximum
norm for two compositions is less than ex (e.g., ex¼ 10�3). If so, perform necessary updates for NS and NU. NP¼NS–NU.

Step 11. Update K values by use of Eqs. 1 and 2; i.e., lnK
ðkþ1Þ
ij ¼ lnuðkÞir � lnuðkÞij for i¼ 1, 2, …, NC and j= r. Increase the itera-

tion step index by one; k¼ kþ 1. Go to Step 6 if NP¼ 1. Otherwise, go to Step 3.
Steps 1, 5, 9, and 10 require user-specified values. The procedure presented in Appendix C is used for Step 1 in this paper. However, it

can be replaced by other procedures, such as correlations for the fluid under consideration, the flash solution from the previous timestep in
flow simulation, and use of a random-number generator. Steps 5 and 9 require convergence criteria, and Step 10 requires a merging criterion.

Step 2 sets the reference composition that is required to define Eq. 1 in the initialization. First, TPD is calculated by function DR

(Eq. A-13) at NS sampling compositions with the overall composition z as the reference composition xr. Then, the initial reference com-
position is redefined that gives the minimum DR among the NS sampling compositions. Note that Eq. A-14 cannot be used for this initi-
alization step because the NS initial sampling compositions are not stationary points of TPD defined at z. Steps 7 and 8 describe how to
update a reference composition when the constraints regarding bj and hj are not satisfied during the iteration.

In Step 4, the exclusion of sampling compositions from set P is performed depending on their DRj values from Eq. A-13. That is, the
sampling composition with the largest DRj value among set P is first excluded. The subsequent exclusions, if necessary, are in the order
of decreasing DR. If Step 4 is taken in the first iteration (k¼ 1), the DRj values calculated in Step 2 are directly used.

In Step 5, it is crucial to precisely implement the multiphase RR algorithm as described in Okuno et al. (2010a). In particular, it is
recommended to confirm the following for each RR solution:

• The feasible region for bj ( j¼ 1, 2, …, NP) should be based on nonnegativity of components’ mole fractions, 0� xij� 1 (i¼ 1,
2, …, NC, and j¼ 1, 2, …, NP). Note that the function to be minimized in the RR solution is nonmonotonic and convex within its
feasible region (Michelsen 1994; Michelsen and Mollerup 2004; Okuno et al. 2010a).

• The initial values for bj ( j¼ 1, 2, …, NP) should be placed inside the feasible region.
• Under-relaxation should be performed if a Newton step is found to bring the iterate to the infeasible domain, to keep bj ( j¼ 1, 2,

…, NP) feasible. It is straightforward to calculate the maximum step size to be taken to reach a feasibility limit along a given search
direction (Newton’s direction) because the feasibility limits are all linear [Eq. 10 in Okuno et al. (2010a)].

The new algorithm is to locate stationary points of TPD that give the global minimum of the Gibbs free energy at the specified T
and P with the well-known convergence behavior of successive substitution (Mehra et al. 1983; Ammar and Renon 1987; Kaul 1992).
Michelsen (1982a) showed that successive substitution for the stationary-point method of phase-stability analysis converges to a mini-
mum, instead of a maximum or saddle point, of the TPD function. It has been observed in this research that the developed algorithm
also converges to minima of the TPD function.

In the new algorithm, equilibrium phases are found as a subset of the converged stationary points; that is, the number of phases is
part of the solution. One of the main differences from the conventional flash is that the unified TPD equations (Eq. 1) can be solved
with an arbitrary number of sampling compositions. This gives the flexibility in terms of robustness and efficiency that the algorithm
offers; e.g., use of more sampling compositions increases the level of robustness at the expense of the increased number of equations, at
least for the initial stage of iteration. As will be discussed later, extra sampling compositions naturally merge for a case in which NS is
greater than the number of stationary points present upon convergence.

The algorithm presented previously is substantially different from that of Gupta et al. (1991). An important difference comes from
the difference in formulation; that is, they introduced an additional set of equations, bjhj¼ 0, which were called “stability equations” in
their papers. A similar set of equations, bjhj/(bjþhj)¼ 0, were then solved simultaneously with the RR equations in their algorithm.
However, Appendix A clearly shows that the complete formulation does not require the stability equations of Gupta et al. (1991). The
correct set of equations in the current paper does not have the degeneracy issues that the algorithm of Gupta et al. (1991) exhibits near
phase boundaries because of their stability equations, as reported by Alsaifi and Englezos (2011).

The robustness of the current algorithm also comes from the careful initialization (Step 1) and adaptive selection of the reference
composition (Steps 2, 7, and 8). The initialization scheme of Gupta (1990) eliminates the sampling compositions that have positive
D values from Eq. A-13 with z as the reference composition. However, this often leads to a complete failure of the calculation.

The simplicity of the formulation has led to the straightforward iteration steps, which are essentially the widely used successive sub-
stitution. Unlike other related publications after Gupta et al. (1991), such as Abdel-Ghani (1995), Chaikunchuensakun et al. (2002), and
Alsaifi and Englezos (2011), the robust solution of multiphase RR equations (Okuno et al. 2010a) further enhances the robustness of the
current algorithm.

Case Studies

The new algorithm can make multiphase flash problems straightforward by not having to solve for false solutions and correct them.
This section presents case studies to demonstrate the robustness and simplicity of the new algorithm with the initialization method pre-
sented in Appendix C. All case studies presented in this section are performed with the in-house software developed by Zhu et al.
(2017). The convergence criteria used for the new algorithm are stated previously (e.g., ef¼ eg¼ 10�10 and ex¼ 10�3).

The new algorithm is compared with the conventional method of sequential phase-stability and -split calculations and the method of
Gupta et al. (1991). In the sequential method used for this section, single-phase stability analysis is performed with two initial guesses,
searching for a V-like phase first and an L-like phase next, on the basis of Wilson’s K values (Michelsen 1982a). For stability analysis
for multiple phases, initial guesses recommended by Firoozabadi (1999) and Li and Firoozabadi (2012) are used in addition to the V-
like and L-like guesses, in the following order: a V-like phase, an L-like phase, compositions near vertices in composition space, the
midpoint of phase compositions, and uixi for i¼ 1, 2,…, NC.

Calculations in this section use only successive substitution for a fair comparison in terms of robustness. However, the new algo-
rithm based on successive substitution can be switched to any second-order convergent method in the vicinity of a solution, when the
residual of Eq. 1 becomes less than a certain criterion, as will be shown for Case 4. Direct application of Newton’s method for the for-
mulated problem (Appendix A) is to be investigated. The iteration scheme used for the new algorithm is essentially the traditional suc-
cessive substitution. As presented in Heidemann and Michelsen (1995), successive substitution may not converge if negative binary
interaction parameters are used for attraction terms in a cubic-EOS fluid model.

The convergence criterion used for stability analysis in the conventional method is that the maximum norm of stationarity equations
is less than 10�10. The convergence criterion used for phase-split calculations in the conventional method is that the maximum norm of
fugacity equations is less than 10�10. Use of 10�10 for these convergence criteria is equivalent to the use of ef¼ 10�10 for the new algo-
rithm. The criterion used for a trivial solution in the conventional stability analysis is 10�3, which is equivalent to the merging criterion
ex¼ 10�3 in the new algorithm.
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The number of fugacity-coefficient calculations is reported as a measure of computational cost, in addition to the number of itera-
tions required for convergence, for each case. Both metrics depend on the initial NS and their locations with the new algorithm; i.e.,
results regarding the computational cost will be different if other initialization methods are used. A calculation for a vector consisting
of lnui for i¼ 1, 2,…, NC is counted as one.

Case 1. This case uses mixtures of H2O, C3, and n-C16 to graphically show a few important features of the new algorithm. The proper-
ties used for the components are given in Table 1. Fig. 1 shows the two- and three-phase regions in composition space at 430 K and 35
bar for the ternary system. In Fig. 1, L, V, and W represent the oleic, gaseous, and aqueous phases, respectively.

The new algorithm is applied with initial NS¼ 6 along the mixing line between (0.0, 0.9, 0.1) and (0.9, 0.0, 0.1). Out of the six sam-
pling compositions, three compositions are placed near the compositional vertices, and the others are the central points in the three
regions surrounding a given overall composition (Ri for i¼ 1, 2, and 3, as given in Appendix C). The six sampling compositions initially
distributed merge into three stationary points that correspond to the L, V, and W phases on the Gibbs free energy surface. Fig. 2 shows
the Gibbs free energy surface at 430 K and 35 bar, and the tangent planes converged for three overall compositions with H2O concentra-
tions of 0.10, 0.75, and 0.84 along the mixing line. It has been visually confirmed that the algorithm has successfully converged to the
global minimum of the Gibbs free energy subject to material balance for each overall composition.

Fig. 3 shows the behavior of the converged bj and hj along the mixing line. One nontangent stationary point in set U is observed in
the two-phase regions (LþV and LþW) along the mixing line. The DR values at such nontangent stationary points in Fig. 2 can be con-
firmed with Fig. 3b; e.g., hW of 0.2478 for zH2O

¼ 0.1. They qualitatively indicate how close the current equilibrium state is to a phase
transition, as can be seen in Fig. 3b. Hence, the new algorithm provides more global information about the Gibbs free energy than the
conventional sequential method, when it converges to nontangent stationary points with positive DR values.

Figs. 1, 2, and 3 present that different sets of equilibrium phases can be easily calculated as thermodynamically stable stationary
points by use of the unified algorithm that directly converges to the correct solution. Unlike the current algorithm, the negative flash
approach (Whitson and Michelsen 1989) may indicate phase instability with negative b values when obtaining a false solution.

The new algorithm is compared with the method of Gupta et al. (1991) by use of the overall composition of 75% H2O, 15% C3,
and 10% n-C16 at 560 K and 65 bar. The critical endpoint of type L1¼VþW is calculated for this mixture at 569.35 K and 130.07
bar by use of the PR EOS. The correct solution of L1þV is given in Table 2. The method of Gupta et al. (1991) cannot converge to
this solution for several reasons. First, the initialization scheme proposed by Gupta (1990) yields an RR problem with an unbounded
feasible domain, resulting in a failure in initialization. Second, even when initialized successfully with the method given in Appendix C
(e.g., NS¼ 6), their algorithm stops proceeding at the 10th iteration step because of an open feasible domain encountered for the RR so-
lution. These types of failures occur for the next cases with the algorithm of Gupta et al. (1991), although they are not presented in
this paper.

Component TC (K) PC (bar) ω

H2O 647.3000 220.8900 0.3440
C3 369.8000 42.4600 0.1520

n-C16 717.0000 14.1900 0.7420

Binary Interaction Parameters 
H2O C3 n-C16

H2O 0.0000 0.6841 0.3583
C3 – 0.0000 0.0000

n-C16 – – 0.0000

Table 1—Properties of the components for Case 1.

H2O

C3n-C16

Mixing line

L + W

L + V + W

L + V

Fig. 1—Phase boundaries for the ternary system of H2O, C3, and n-C16 at 430 K and 35 bar. L, V, and W stand for the oleic, gaseous,
and aqueous phases, respectively. Properties of the components are given in Table 1. The mixing line between (0.0, 0.9, 0.1) and
(0.9, 0.0, 0.1) is used to show the variation of parameters in Figs. 2 and 3.
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As an example for the new algorithm, Fig. 4 shows the convergence behavior in terms of NP and NU, and the residual of Eq. 1, when
it is initialized with NS¼ 6 (i.e., three compositions near the compositional vertices and the other three at the centers of Ri for i¼ 1, 2,
and 3 by use of NSmax¼ 6 and n¼ 1.0). The new algorithm converges to the correct solution given in Table 2 in 21 iterations. Merging
of sampling compositions (in set P and/or set U) occurs at the fourth, fifth, and seventh iterations, as indicated by decreasing NS

(¼NUþNP) in Fig. 4a. Hence, the algorithm takes seven iteration steps to identify the correct number of stationary points in this case,
when started with the six sampling compositions. A stable linear convergence rate is observed until the convergence is achieved, as
with the normal successive substitution (Fig. 4b). The reference composition, xr, remains the same after the eighth iteration in this case.
The total number of fugacity coefficient computations is 84, in which 25 computations were performed for initialization to determine a
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Fig. 2—Gibbs free energy surface at 430 K and 35 bar, and the tangent planes converged for three compositions on the mixing line
given in Fig. 1. (a) zH2O

5 0.1; (b) zH2O
5 0.75; (c) zH2O

5 0.84.
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reference composition; hence, on average, each iteration took approximately three computations of fugacity-coefficient vectors. Appen-
dix D shows a series of ternary diagrams to explain the motion of sampling compositions for selected iterations.

It has been confirmed that the new algorithm still converges to the correct solution in 22 iteration steps when initialized with only
three sampling compositions near the composition vertices for this relatively simple case. The total number of fugacity coefficient com-
putations is 66, in which 13 computations were performed in initialization; hence, the average number of fugacity coefficient computa-
tions is three per iteration.
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Fig. 3—Variation of parameters with the new algorithm applied along the mixing line given in Fig. 1, at 430 K and 35 bar. (a) Phase
mole fraction. (b) Stability variable. hL 5 0 in Fig. 3b because the L phase is always present along the mixing line.

Component L V 

H2O 0.32452700 0.79574966
C3 0.09549610 0.15586062

n-C16 0.57997690 0.04838973

β 0.09708713 0.90291287
θ 0.00000000 0.00000000

GR/RT –0.96787252

Table 2—Solution for Case 1 with the new algorithm. Properties of

the components are given in Table 1. The overall composition is 75%

H2O, 15% C3, and 10% n-C16. The specified temperature and

pressure are 560 K and 65 bar, respectively. The algorithm of Gupta

et al. (1991) fails for this case because of an open feasible domain in

the RR problem based on their initialization scheme.
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Fig. 4—Convergence behavior of the new algorithm for Case 1 with the overall composition of 75% H2O, 15% C3, and 10% n-C16 at
560 K and 65 bar. Properties of the components are given in Table 1. (a) NP and NU. (b) Residual of Eq. 1 for sets P and U.
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The conventional method of sequential phase-stability and -split calculation is also tested for this case. In the single-phase stability
test, a trivial solution is detected in 53 iteration steps with a V-like composition for the first trial. Then, instability is detected in 14 itera-
tion steps with an L-like composition for the second trial. Then, the subsequent two-phase-split calculation converges to the solution
(Table 2) in 24 iterations. Phase instability cannot be detected with all nine guesses for this two-phase solution. The total number of iter-
ations required in this two-phase stability test is 175. Hence, the total number of iterations required for the conventional sequential
method is 266, compared with 21 for the new algorithm with NS¼ 6. The total number of fugacity-coefficient computations is 301 with
the conventional algorithm, in comparison with 84 with the new algorithm with NS¼ 6. For this case, the new algorithm with NS¼ 6
requires much fewer iterations and fugacity calculations than the conventional sequential algorithm.

Unlike in Gupta et al. (1991), the RR routine embedded in the new algorithm is guaranteed to converge to the correct solution as
shown in Okuno et al. (2010a). It is important to confirm the existence of the unique solution for a given multiphase RR problem before
the iteration (Okuno et al. 2010a).

Case 2. The simplicity of the formulation and algorithm developed in this research yields the robustness in multiphase flash by not hav-
ing to obtain false solutions. The advantage over the conventional sequential methods is pronounced when the correct solution in a mul-
tiphase calculation does not include either the L1 or V phase, which can frequently occur in many gas- and steam-injection processes
with multiple partially miscible phases.

This case uses the binary system of C1 and hydrogen sulfide (H2S) at 190 K and 40.53 bar to show several issues of the sequential
method and the robustness of the new algorithm. Table 3 gives the components’ properties. The Gibbs free energy surface in composi-
tion space exhibits three lobes corresponding to the L1, L2, and V phases in the order of increasing C1 concentration (zC1) (Fig. 5). The
sequential method fails to find the correct solutions with L2þV for zC1 from 0.968 to 0.982, as explained below.

For 0.968� zC1< 0.980, the sequential algorithm finds an L phase in the single-phase stability analysis, and the subsequent two-
phase flash results in a local minimum with L1þV. Then, the stability analysis for one of the two phases finds the L2 phase. However,
three-phase PT flash is not possible for a binary mixture, for which P and T are interdependent (i.e., the degree of freedom is one).
Hence, the final result from the sequential algorithm is the L1þV phases that have been obtained. Table 4 shows the correct solution
from the new algorithm and the incorrect solution from the sequential method at zC1¼ 0.970 at 190 K and 40.53 bar.

Component PC (bar) TC (K) ω

C1 46.0016 190.6000 0.0080
H2S 89.3686 373.2000 0.1000

Table 3—Properties of the components for Case 2. The binary

interaction parameter between C1 and H2S is 0.0800.
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Fig. 5—Gibbs free energy surface in composition space for the binary system of C1 and H2S at 190 K and 40.53 bar. Properties of
the components are given in Table 3. The three lobes indicated correspond to the L1, L2, and V phases in the order of increasing C1

mole fraction in composition space.

New Algorithm Sequential Algorithm

L1 V L2 L1 V 

C1 0.18666898 0.98270136 0.93610375 0.12587785 0.97953529
H2S 0.81333102 0.01729864 0.06389625 0.87412215 0.02046471

β 0.00000000 0.72742456 0.27257544 0.01116888 0.98883111
θ 0.13266274 0. 00000000 0. 00000000 – –

GR/RT –0.53949050 –0.53769775

Table 4—Results for Case 2 with the new and conventional sequential algorithms. Properties of the

components are given in Table 3. The overall composition is 97% C1 and 3% H2S for this table. The

specified temperature and pressure are 190 K and 40.53 bar, respectively.
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The new algorithm converges to the correct two-phase solution (L2þV) directly without having to find any false solution. Here, the
convergence of the new algorithm is explained for the case with initial NS¼ 8 (NSmax¼ 16 and n¼ 1.0). Two of them are distributed
near the vertices of composition space, and three sampling compositions are evenly distributed for each side of the overall composition.
Fig. 6 shows the variation of NP and NU, and the residual of Eq. 1 with respect to the number of iterations for this case. The new algo-
rithm successfully converges to the correct solution (Table 4) in 92 iterations. The converged Gibbs free energy (G R) from the new
algorithm, �0.53949050, is confirmed to be lower than the value from the sequential method, �0.53769775.

In the initialization, NP¼ 1 occurs in the initialization, which increases NS by one as the overall composition becomes part of the
sampling compositions in such a case (Step 2 in the algorithm). Reselection of reference composition (Steps 7 and 8 of the new algo-
rithm) occurs frequently from Iterations 1 through 6, in which Step 8 is only used at the fourth iteration and Step 7 at the other five itera-
tions. Merging of sampling compositions occurs at the first, 10th, and 31st iterations, as shown by decreasing NS (¼NPþNU) in Fig. 6a.
From the 31st iteration, NS becomes the total number of stationary points, three, on the DR function. At the convergence, two of the
three stationary points correspond to the two equilibrium phases (i.e., set P), and the other is a nontangent stationary point (i.e., set U)
with a positive DR (Table 4). The residual of Eq. 1 shown in Fig. 6b indicates a linear convergence rate for a fixed reference composi-
tion, xr. The total number of fugacity-coefficient computations is 348, out of which 33 computations are performed in the initialization
to determine a reference composition. The average number of fugacity-coefficient computations per iteration is approximately three.
Appendix D demonstrates the motion of all sampling compositions for selected iteration steps, in which merging and convergence of
sampling compositions are clearly shown.

To see the number of iterations required for robust convergence with respect to the initial NS used, the initial NS was controlled by
changing NSmax by two with n¼ 1.0 with the procedure given in Appendix C. The initial NS required for robust convergence is eight in
this case. The numbers of iterations required for convergence are 92, 86, and 76 for the initial NS of 8, 10, and 12. The number of sta-
tionary points detected upon convergence is three for NS�8. The numbers of fugacity-coefficient calculations are 348, 341, and 327 for
the initial NS of 8, 10, and 12.

When initialized with NS¼ 4 (two near the edges of composition space and the other two at the centers of both sides of the overall
composition), the algorithm does not converge to the global minimum of the Gibbs free energy. To explain this, Fig. 7 shows the TPD
in composition space at 190 K and 40.53 bar. The correct two-phase solution of L2þV is represented by the black dots on the DR func-
tion. The hollow square dot is a local minimum on DR. Only two stationary points are located when the algorithm is initialized with
only four sampling compositions. These two stationary points correspond to the L1 and V lobes on the Gibbs free energy surface (Fig.
5), which do not yield the global minimum of the Gibbs free energy.

For 0.980� zC1� 0.982, the sequential algorithm fails to find any phase instability in single-phase stability analysis. However, the
new algorithm properly converges to the L2 and V phases. Table 5 shows the solution for zC1 of 0.980. The Gibbs free energy (G R) at
the solution, –0.49203424, is confirmed to be lower than the single-phase Gibbs free energy, –0.49183831.

Even if the degree of freedom is more than one for the sequential method, it has been observed in various flow-simulation cases that
the sequential method initiated with Wilson’s K values tends to fail to find the correct solution that does not involve the L1 or V phases.
An example is the ternary mixture of 60% carbon dioxide (CO2), 12% C1, and 28% n-C20 at 250 K and 38 bar. Three phases of L1, L2,
and V are present in composition space, and the overall composition in the L1–L2 region is in the vicinity of the tie triangle. The sequen-
tial method cannot find phase instability in the two-sided stability analysis with the V and L estimates from Wilson’s correlation. Case 4
will provide another example of this kind.

Case 3. This case uses a mixture of North Ward Estes oil (Khan et al. 1992), H2O, CO2, n-C4, and n-C10. The North Ward Estes oil has been
characterized with six components; therefore, there are 10 components altogether. Components’ properties and the overall composition are
given in Table 6. The critical endpoint of type V¼ L2þL1 is calculated by use of the PR EOS at 452.80 K and 86.04 bar for this mixture.
Three equilibrium phases, VþL1þL2, coexist at 459 K and 87 bar (i.e., close to the critical endpoint).

The new algorithm is tested with different initial numbers of sampling compositions (NS). For this purpose, NS is controlled by
changing NSmax from 20 to 95 by adding 15 with n¼ 1.0. The number of stationary points (minima) detected upon convergence is four
for all initial NS tested: three tangent stationary points (i.e., set P) and one nontangent stationary point (i.e., set U).

To explain this case specifically, the new algorithm is initialized with NS¼ 20 (NC¼ 10, NSmax¼ 20, and n¼ 1.0). In addition to 10
sampling compositions placed near the 10 composition vertices, 10 sampling compositions are distributed at the central points of
regions Ri for i¼ 1, 2,…, 10 in composition space around the overall composition (Appendix C).

0 20 40 60 80

Number of Iterations

(a)

100 0 20 40 60 80

Number of Iterations

(b)

100
0

1

2

3

4

5

N
P
 a

nd
 N

U

Np

Nu

Set P
Set U

1×10–16

1×10–14

1×10–12

1×10–10

1×10–8

1×10–6

1×10–4

1×10–2

1×100

R
es

id
ua

l o
f t

he
 T

P
D

 E
qu

at
io

ns
 

Fig. 6—Convergence behavior of the new algorithm for Case 2 at 190 K and 40.53 bar. Properties of the components are given in
Table 3. (a) NP and NU. (b) Residual of Eq. 1 for sets P and U.
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Component L1 V L2

β 0.00000000 0.94202784 0.05797216
θ 0.13266274 0.00000000 0.00000000

GR/RT –0.49203424

Table 5—Solution for Case 2 with the new algorithm. Properties of the components are given in Table

3. The overall composition is 98% C1 and 2% H2S. The specified temperature and pressure are 190 K

and 40.53 bar, respectively. The correct set of three phase compositions is identical to the one

presented in Table 4. The conventional algorithm fails to find phase instability in single-phase stability

analysis for this flash calculation.

Component Overall Composition MW (g/mol) PC (bar) TC (K) ω

CO2 0.1200 44.0100 73.7600 304.2000 0.2250
C1 0.0489 16.0430 46.0000 190.6000 0.0080

n-C4 0.4400 58.1240 38.0000 425.2000 0.1930
n-C10 0.1000 142.2850 21.0800 617.6000 0.4900
C2–3 0.1121 38.4000 45.0500 343.6400 0.1300
C4–6 0.1000 72.8200 33.5100 466.4100 0.2440
C7–14 0.0300 135.8200 24.2400 603.0700 0.6000
C15–24 0.0100 257.7500 18.0300 733.7900 0.9030
C25+ 0.0090 479.9500 17.2600 923.2000 1.2290
H2O 0.0300 18.0150 220.8900 647.3000 0.3440

Binary Interaction Parameters 
CO2 C1 n-C4 n-C10 C2–3 C4–6 C7–14 C15–24 C25+ H2O

CO2 0.0000 0.1200 0.1200 0.1141 0.1200 0.1200 0.0900 0.0900 0.0900 0.6670
C1 – 0.0000 0.0000 0.0422 0.0000 0.0000 0.0000 0.0000 0.0000 0.7320

n-C4 – – 0.0000 0.0078 0.0000 0.0000 0.0000 0.0000 0.0000 0.6840
n-C10 – – – 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3570
C2–3 – – – – 0.0000 0.0000 0.0000 0.0000 0.0000 0.6790
C4–6 – – – – – 0.0000 0.0000 0.0000 0.0000 0.6050
C7–14 – – – – – – 0.0000 0.0000 0.0000 0.4910
C15–24 – – – – – – – 0.0000 0.0000 0.3270
C25+ – – – – – – – – 0.0000 0.2420
H2O – – – – – – – – – 0.0000

Table 6—Properties of the components for Case 3. MW5molecular weight.
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Fig. 7—TPD in composition space for the binary system of C1 and H2S. Properties of the components are given in Table 3. The tem-
perature and pressure are 190 K and 40.53 bar, respectively.
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Fig. 8 shows the convergence behavior in terms of NP, NU, NS, and the residual of Eq. 1 with the new algorithm. The new algorithm
converges to the correct solution in 823 iterations, as shown in Table 7, in which the compositions of V and L2 are close to each other.
Upon convergence, three equilibrium compositions are in set P, and one nontangent stationary composition is in set U. The nontangent
stationary point is converged near 100% water with h¼ 0.79. The Gibbs free energy (G R) converged with the new algorithm is
–2.67985726.

In the initialization, two sampling compositions are in set P, and the other 18 compositions are in set U. Merging of sampling com-
positions in set P and/or set U reduces NS during the iteration (Fig. 8c). Reselection of the reference composition occurs frequently
between Iterations 1 and 11, 21 and 62, and 148 and 206, resulting in the oscillation of NP and NU during these iterations (Figs. 8a and
8b). Accordingly, the residuals of Eq. 1 for sets P and U also exhibit oscillations, as can be seen in Figs. 8d and 8e. At the 206th itera-
tion, the correct NP of three is identified, from which the residual of Eq. 1 for set P starts decreasing steadily (Figs. 8a and 8d). At the
243rd iteration, NU decreases from two to one, which makes the residual of Eq. 1 for set U decrease discontinuously, as presented in
Figs. 8b and 8e. From the 243rd iteration on, a stable linear convergence rate is observed with the final number of stationary points
(NP¼ 3 and NU¼ 1). Between the 700th and the 823rd iterations, the residual of Eq. 1 for set U exhibits oscillations around 10�14,
which is much lower than the convergence criteria (10�10 used in this paper). This is likely because, in this particular case, the residual
for set U is sensitive to the TPD function, which is varying with varying compositions in set P before the final convergence (i.e., the
TPD is defined with a reference composition in set P).
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Fig. 8—Convergence behavior of the new algorithm for Case 3. Properties of the components are given in Table 6. The temperature
and pressure are 459 K and 87 bar, respectively. (a) NP; (b) NU; (c) NS; (d) residual of Eq. 1 for set P; and (e) residual of Eq. 1 for set U.
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The number of iterations required for convergence are 823 and 737 for the initial NS of 20 (NSmax¼ 20 with n¼ 1.0) and 40
(NSmax¼ 96 with n¼ 1.0), respectively. For NS of 20, the total number of fugacity-coefficient computations is 3,861, out of which 81
computations are for the initialization. Therefore, the number of fugacity calculations per iteration is approximately five for this case.

The conventional sequential phase-stability and -split calculation is also tested for this case. Fig. 9 shows the number of iterations
required for each step of the conventional sequential method. The initialization procedure for the conventional method was explained
earlier in this section. Single-phase stability analysis detects an instability with a V-like phase composition at the 96th iteration. Then,
the subsequent two-phase-split calculation converges to a false two-phase solution in 456 iterations. After that, two-phase stability anal-
ysis detects an instability of the two-phase solution by use of the second initial guess. The first guess takes 128 iterations, but they are
unable to identify any phase instability. The second guess then takes 166 iterations until phase instability is detected. A three-phase split
calculation is performed with the initial K value estimates obtained from the two-phase-stability test, and converges to a solution in 708
iterations. Phase instability cannot be detected for this three-phase solution by use of all 23 sets of initial guesses. The number of itera-
tions taken by this three-phase stability analysis is 9,782. That is, the conventional sequential method requires 11,336 iterations for its
final solution of three phases. The total number of fugacity-coefficient calculations is 13,234 with the sequential method. Computations
in the three-phase stability are counted for a fair comparison with the new algorithm because the new algorithm has found a nontangent
stationary point, as shown in Table 7. However, the new algorithm is shown to require fewer iterations and fugacity computations even
without considering the three-phase stability for the sequential method. These results show that the convergence of the new algorithm is
more rapid than that of the sequential algorithm in terms of iteration and fugacity calculation for this case.

Case 4. Case 4 uses a four-component EOS fluid model based on the Bob Slaughter Block (BSB) oil that was originally characterized
by Khan et al. (1992) with seven components. This quaternary model for the BSB oil (BSB-Q) was used previously in Okuno et al.
(2011). Parameters for the BSB-Q oil are given in Table 8. The new and conventional algorithms are compared for flash calculation of
the BSB-Q oil at 313.706 K and 82.737 bar.

Component L2 L1 V 
Nontangent

Stationary Point 

CO2 0.11738916 0.07803457 0.15787879 0.00010037
C1 0.04753232 0.02844412 0.06839099 0.00002118

n-C4 0.44144075 0.38822000 0.43634612 0.00000002
n-C10 0.10303175 0.13284012 0.05967230 0.00000000
C2–3 0.11120735 0.08458583 0.12808134 0.00000070
C4–6 0.10094542 0.09554283 0.09080736 0.00000000
C7–14 0.03083866 0.04300449 0.01794197 0.00000000
C15–24 0.01029303 0.02618153 0.00310814 0.00000000
C25+ 0.00795880 0.09401603 0.00068515 0.00000000
H2O 0.02936275 0.02913048 0.03708783 0.99987773

β 0.89781487 0.01911965 0.08306548 0.00000000
θ 0.00000000 0.00000000 0.00000000 0.79007647

GR/RT –2.67985726

Table 7—Results for Case 3 with the new algorithm.
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Fig. 9—Number of iterations required for each step in the conventional sequential method of PT flash for Case 3. The total number
of iterations required for convergence by use of the conventional sequential algorithm is 11,336, if the number of iterations for the
initial guesses that cannot identify phase instability for two and three phases is counted. SA 5 stability test.
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The new algorithm converges to two tangent stationary points (L1 and L2) in set P and one nontangent stationary point (V) in set U,
when 12 or more sampling compositions are initially distributed by use of the method given in Appendix C. Table 9 summarizes the
converged solution.

For the initial NS of 12, the convergence is achieved in 161 iterations. The converged G R value is �3.45251125. The total number
of fugacity-coefficient vector computations is 720, of which 49 computations are for the initialization. The number of fugacity-coeffi-
cient vector computations is approximately four per iteration. Fig. 10 shows the convergence behavior of the new algorithm. It requires
42 iterations to identify the correct number of stationary points; i.e., NP¼ 2 and NU¼ 1 (Figs. 10a and 10b). Merging of sampling com-
positions occurs at iteration steps 8, 11, 16, 19, 20, 21, 23, 37, and 42, resulting in reduction of NS as shown in Fig. 10c. Reselection of
the reference composition, xr, by use of Steps 7 and 8 of the new algorithm occurs frequently until the 26th iteration. At the 42nd itera-
tion, NU becomes the final number of nontangent stationary points through merging, resulting in a significant decrease in the residual
for set U (Fig. 10e).

The conventional sequential method is shown to converge to an incorrect solution for this case. Fig. 11 shows the number of itera-
tions required for each step of the sequential phase-stability and -split calculations. The single-phase stability finds an instability with a
V-like initial composition (i.e., the first guess) in 18 iterations. Then, the subsequent two-phase flash converges in 47 iterations. After
that, two-phase stability analysis with six different estimates finds no instability after the total of 688 iterations. With the seventh initial
guess (i.e., the midpoint), an instability is detected in 128 iterations. Three-phase flash is performed with the initial K values obtained
from two-phase stability analysis and converges in 141 iterations. This three-phase flash results in negative phase amounts; i.e., negative
flash. Hence, another two-phase flash is performed, and it converges in 49 iterations. Then, phase-stability analysis for the new two-
phase solution with 11 different initial guesses finds no instability, taking 855 iterations. Finally, two phases are assumed to be stable af-
ter the total of 1,926 iterations. The number of fugacity-coefficient vector calculations is 2,323. However, the converged G R value is
�3.45110691, which is higher than the G R obtained from the new algorithm (�3.45251125). This indicates that the two-phase solution
obtained from the conventional sequential method is a local minimum of Gibbs free energy. The new algorithm converged to a lower
Gibbs free energy with much fewer iterations and fugacity computations.

The new algorithm based on successive substitution can be used to initialize a second-order convergent method with set P, as men-
tioned previously. Here, the current case is used to show the convergence behavior of the new algorithm and an in-house second-order
algorithm (Okuno et al. 2010b) with different switching criteria. The final convergence criterion used for the second-order algorithm is
10�10, as in all case studies in this paper. The switching criterion used with Eq. 1 for sets P and U ranges from 10�2 to 10�6. Table 10
summarizes the number of iterations for the new algorithm before switching and the second-order algorithm after switching for each
of the switching criteria used. After switching to the second-order algorithm, the correct convergence is achieved rapidly in three or
fewer iterations for all the cases tested. As an example, the convergence behavior before and after switching is shown in Fig. 10d with
the switching criterion of 10�2. The new algorithm is used until the 38th iteration, and is switched to the second-order algorithm when
the residual of Eq. 1 is below 10�2 for both sets P and U. Then, the rapid convergence is achieved in three iterations, as shown by
the star markers in Fig. 10d. The total number of iterations required for convergence is 41. Use of the second-order algorithm after
switching at 10�2 results in four times more rapid convergence in terms of number of iterations compared with the use of the new algo-
rithm alone.

Another test is conducted by use of Wilson’s correlation to initialize the new algorithm with only two sampling compositions: one
V-like and one L-like. The new algorithm converges in 190 iterations to the same solution presented in Table 9; i.e., two tangent station-
ary points (L1 and L2) in set P and one nontangent stationary point (V-like) in set U. The total number of fugacity-coefficient vector

Component Overall Composition TC (K) PC (bar) ω 

CO2 0.7218 304.200 73.765 0.225
C1 0.0214 160.000 46.002 0.008

PC1 0.1870 529.028 27.318 0.481
PC2 0.0698 795.328 17.309 1.042

Binary Interaction Parameters 
CO2 C1 PC1 PC2

CO2 0.0000 0.0550 0.0810 0.1050
C1 – 0.0000 0.0000 0.0000

PC1 – – 0.0000 0.0000
PC2 – – – 0.0000

Table 8—Properties of the components for Case 4. PC 5 pseudocomponent.

Component V L1 L2

CO2 0.92939195 0.62612349 0.86182262
C1 0.05933155 0.01782033 0.02660759

PC1 0.01127539 0.24083442 0.10820073
PC2 0.00000111 0.11522177 0.00336906

β 0.00000000 0.59418965 0.40581035
θ 0.00154683 0. 00000000 0. 00000000 

Table 9—Results for Case 4 with the new algorithm.
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computations is 582, of which nine computations are for the initialization. Hence, the number of fugacity-coefficient vector computa-
tions is approximately three per iteration.

Fig. 12 shows the convergence behavior of the new algorithm. The correct number of stationary points [i.e., NP¼ 2 and NU¼ 1
(Figs. 12a and 12b)] is identified at the 55th iteration. In the initialization, NP¼ 1 occurs, which increases NS by one when the overall
composition becomes an additional sampling composition (Step 2). Merging of sampling compositions does not occur for this case.
Hence, NS remains three until the final convergence is achieved. Reselection of reference composition, xr, by use of Steps 7 and 8 of the
new algorithm occurs at iteration steps 1, 2, 20, and 55. In Fig. 12c, a significant increase in the residual of the TPD equations occurs
for set P at the 20th iteration when NP is increased from two to three. NU is zero between iteration steps 20 and 54, for which the resid-
ual of the TPD equations for set U does not exist in Fig. 12d. From the 55th iteration until the convergence, NP and NU are the final
numbers of tangent stationary points and nontangent stationary points: two and one, respectively.

It was observed that the current algorithm could exhibit nonconvergence when the binary interaction parameters of PC2 with C1

and PC1 were set to –0.5. Hence, the current algorithm is considered to possess the inherent limitation of successive substitution
(Heidemann and Michelsen 1995), as mentioned at the beginning of this section.
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Fig. 10—Convergence behavior of the new algorithm for Case 4. Properties of the components are given in Table 8. The tempera-
ture and pressure are 313.706 K and 82.737 bar, respectively. (a) NP; (b) NU; (c) NS; (d) residual of Eq. 1 for set P; and (e) residual of
Eq. 1 for set U. Fig. 10d also shows the convergence behavior of a second-order convergent method that has been initialized by
the new algorithm with the switching criterion of 1022 for Eq. 1 for sets P and U.
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Conclusions

This paper presented a new algorithm for PT flash for an arbitrary number of phases. The unified formulation developed for simultane-
ous phase-stability and -split calculation is based on the classical criterion of phase equilibrium, as explained in Baker et al. (1982). The
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Fig. 11—Number of iterations required for each step in the conventional sequential method of PT flash for Case 4. The total number
of iterations required for convergence by use of the conventional sequential algorithm is 1,926, if the number of iterations for the
initial guesses that cannot identify phase instability for two and three phases is counted. SA 5 stability test.

Switching Criterion 10–2 10–3 10–4 10–5 10–6

Number of iterations required for the new algorithm 38 50 66 82 98
Number of iterations required for the second-order method 3 2 2 2 1

Total number of iterations required for final convergence 41 52 68 84 99

Table 10—Number of iterations when the new algorithm is used to initialize a second-order convergent method for Case 4.
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Fig. 12—Convergence behavior of the new algorithm for Case 4 with the use of Wilson’s correlation in the initialization (i.e., one
V-like and one L-like composition). Properties of the components are given in Table 8. The temperature and pressure are 313.706 K
and 82.737 bar, respectively. (a) NP; (b) NU; (c) NS; (d) residual of Eq. 1 for set P; and (e) residual of Eq. 1 for set U.
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correct set of equations is solved with successive substitution for stationary points of the TPD defined at a reference phase composition.
Although the main focus of this paper was on robust solution of multiphase flash, the new algorithm can be used also to initialize a
second-order convergent method in the vicinity of a solution. Conclusions are as follows:
1. The number of equilibrium phases is part of the solution in the new algorithm, in contrast to the sequential stability/flash approach.

It is not necessary to find false solutions and correct them for robust multiphase flash with the new algorithm. The advantage of the
new algorithm in terms of robustness is more pronounced for more-complex phase behavior, in which multiple local minima of the
Gibbs free energy are present.

2. The new algorithm can be initialized even when no reliable information is available regarding the equilibrium phases of the fluid of in-
terest. In the method used for initializing the algorithm, NC sampling compositions are distributed near compositional vertices, and the
others are systematically distributed around the overall composition specified. No K value correlation is necessary to initialize the new
algorithm. This also yields the flexibility that the new algorithm offers in terms of robustness and efficiency. For example, one can initi-
alize the algorithm with more sampling compositions for enhanced robustness by capturing more information regarding the Gibbs free
energy during the iteration. If reasonable estimates are available for equilibrium phases (e.g., correlations, the solution from the previ-
ous timestep in flow simulation, and tie-simplex tabulation), one can use them to reduce the number of equations to be solved.

3. The new algorithm does not use the stability equations of Gupta et al. (1991) because they are not necessary with the formulation
presented in this research. Consequently, there is no need to solve the augmented Jacobian matrix that must be solved at each itera-
tion in the algorithm of Gupta et al. (1991). Also, the new algorithm does not exhibit the convergence problems that are associated
with the stability equations of Gupta et al. (1991).

4. Case studies showed that the new algorithm finds more-stable solutions (lower Gibbs free energy) for the complex cases tested, for
which the conventional method only finds local minima. It was shown that the new algorithm can find nontangent stationary points
of the TPD function, if present, in addition to equilibrium phases.

5. The iteration scheme of the new algorithm is the traditional successive substitution, of which convergence behavior has been studied
in the literature (Michelsen 1982a; Mehra et al. 1983; Ammar and Renon 1987; Kaul 1992). The new algorithm can be used to initial-
ize a second-order convergent method, as demonstrated in Case 4. It is expected to be more difficult for the algorithm to converge for
mixtures that exhibit a large negative deviation from an ideal solution, according to the analysis of Heidemann and Michelsen (1995).

Nomenclature

D ¼ tangent plane distance defined in Eqs. A-6 and A-10
DRj ¼ dimensionless TPD defined in Eqs. A-13 and A-14

fij ¼ residual of the tangent-plane equations defined in Eq. 1
gj ¼ residuals of the material-balance equations defined in Eq. 3

G R ¼ dimensionless molar Gibbs free energy defined in Eq. A-1
Kij ¼ K value for component i in phase j
K j ¼ vector consisting of NC K values for phase j
L1 ¼ oil-rich liquid phase
L2 ¼ solvent-rich liquid phase
n ¼ exponent used in distribution in Appendix C

NC ¼ number of components
NP ¼ number of sampling compositions in set P
NS ¼ number of sampling compositions
NSi ¼ number of sampling compositions distributed in Ri defined in Appendix C

NSmax ¼ maximum number of initial sampling compositions used in distribution in Appendix C
NU ¼ number of sampling compositions in set U

P ¼ pressure
PC ¼ critical pressure
r1i ¼ number of segments used in Step 4 in Appendix C
r2i ¼ number of segments used in Step 6 in Appendix C
R ¼ universal gas constant
Ri ¼ region defined in Step 2 in Appendix C
ti ¼ parameter defined in Eq. 3
T ¼ temperature

TC ¼ critical temperature
T(x) ¼ tangent plane defined in Eq. A-5

V ¼ gaseous phase
W ¼ aqueous phase
xij ¼ mole fraction of component i in phase j
~xj ¼ vector consisting of NC concentrations for phase j
Xi ¼ parameter defined in Eq. A-12
zi ¼ overall mole fraction of component i
bj ¼ mole fraction of phase j
e ¼ convergence or merging criterion (e.g., 10�10 for convergence and 10�3 for merging)
hj ¼ parameter for phase j as calculated by Eq. 4

uij ¼ fugacity coefficient of component i in phase j
x ¼ acentric factor

Subscripts

C ¼ critical property
i ¼ component index
j ¼ phase index

mix ¼ mixing
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r ¼ reference composition
R ¼ dimensionless property

Ref ¼ reference phase

Superscript

k ¼ iteration step number
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Appendix A—Formulation for Global Minimization of the Gibbs Free Energy

The correct phase equilibrium for a given pressure (P), temperature (T), and overall composition z is defined by xij (i¼ 1, 2, …, NC and
j¼ 1, 2, …, NP) that gives the global minimum of

GR ¼
XNP

j¼1

XNC

i¼1
bjxijlnðxijuijÞ; ðA-1Þ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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where xij is the mole fraction of component i in phase j, bj is the mole fraction of phase j, uij is the fugacity coefficient of component i
in phase j, NC is the number of components, and NP is the number of equilibrium phases. The following constraints are to be satisfied:

zi ¼
XNP

j¼1
bjxij; ðA-2Þ

XNP

j¼1
bj ¼ 1:0; ðA-3Þ

XNC

i¼1
xij ¼ 1:0; ðA-4Þ

where bj � 0 and xij � 0 for i¼ 1, 2, …, NC and j¼ 1, 2, …, NP.
The tangent plane (T) to the Gibbs free energy at composition x0 can be derived by the first-order Taylor-series expansion of the

Gibbs free energy around x0 (Okuno 2009):

TðxÞ ¼ Gðx0Þ þ
XNC

i¼1
ðxi � x0

i Þ
@GðxÞ
@xi

����
x¼x0

¼ Gðx0Þ þ
XNC

i¼1
xiGiðx0Þ �

XNC

i¼1
x0

i Giðx0Þ ¼
XNC

i¼1
xiGiðx0Þ: ðA-5Þ

Note that the plane T spans composition space; i.e., T¼T(x). Then, the TPD function (D), which also spans composition space, is
derived by subtracting T from the Gibbs free energy. That is,

DðxÞ ¼ GðxÞ � TðxÞ ¼
XNC

i¼1
xi½GiðxÞ � Giðx0Þ�; ðA-6Þ

or in dimensionless form,

DRðxÞ ¼ DðxÞ=RT ¼
XNC

i¼1
xi½lnxiuiðxÞ � lnx0

i uiðx0Þ�: ðA-7Þ

At a stationary point of D(x), the first-order derivatives are all zero; that is,

@DðxÞ=@xi ¼ ½GiðxÞ � Giðx0Þ� � ½GNC
ðxÞ � GNC

ðx0Þ� ¼ 0; ðA-8Þ

or

½GiðxÞ � Giðx0Þ� ¼ ½GNC
ðxÞ � GNC

ðx0Þ�; ðA-9Þ

for i¼ 1, 2,…,(NC–1). Therefore, D(x) at a stationary point can be expressed as

DðxÞ ¼
XNC

i¼1
xi½GNC

ðxÞ � GNC
ðx0Þ� ¼ GNC

ðxÞ � GNC
ðx0Þ ¼ GiðxÞ � Giðx0Þ; ðA-10Þ

or in dimensionless form,

DRðxÞ ¼ lnxiuiðxÞ � lnx0
i uiðx0Þ ðA-11Þ

for i¼ 1, 2, …, NC.
Rearrangement of Eq. A-11 yields the traditional stationarity equation of Michelsen (1982a):

ln½XiuiðxÞ� � ln½x0
i uiðx0Þ� ¼ 0; ðA-12Þ

where Xi ¼ xiexpð�D=RTÞ ¼ xiexpð�DRÞ, and i¼ 1, 2, …, NC. Eq. A-12 has been widely used to search for a stationary point of DR in
the stationary-point method of phase-stability analysis (Michelsen 1982a), as part of the conventional sequential phase-stability and
-split calculation. In the stationary-point method, x0 is set to z for testing the stability of the overall composition z. For testing the
stability of a multiphase system, x0 is set to one of the equilibrium phases under consideration. Note again that Eqs. A-8 through A-12
hold only when x corresponds to a stationary point of DR.

Eq. A-12 reduces to the fugacity equations for NP stationary points that are on the tangent plane T (i.e., NP equilibrium phase compo-
sitions, at which DR¼ 0). At all other stationary points, DR should be positive because the T plane cannot lie above the G surface at any
composition at an equilibrium state (Baker et al. 1982). Hence,

DRj ¼
XNC

i¼1
xijðlnxijuij � lnxiruirÞ � 0; ðA-13Þ

for j¼ 1, 2, …, NS at a specified T and P. NS is the number of stationary points of the dimensionless TPD function, DR, defined with a
reference equilibrium phase composition (xir, where i¼ 1, 2,…, NC). Note that NS¼NPþNU, where NU is the number of stationary
points that are not equilibrium phases (i.e., NU stationary points at which DR>0). Eq. A-13 can be also written as

DRj ¼ lnxijuij � lnxiruir � 0; ðA-14Þ

when xj ( j¼ 1, 2, …, NS) are all stationary points.
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The unified formulation for phase-stability and -split calculation in the current paper is to find a set of xij (i¼ 1, 2, …, NC, and j¼ 1,
2, …, NS) such that DRj¼ 0 subject to Eqs. A-2, A-3, and A-4 for equilibrium phases j¼ 1, 2, …, NP, and DRj>0 subject to Eq. A-4 for
the other stationary points that are not equilibrium phases j¼ (NPþ1), (NPþ2)…, NS. The algorithm presented in the current paper uses
the DR function with adaptive selection of the reference composition xr for an arbitrary number of iterative compositions, which converge
to stationary points with TPDs DRj.

Appendix B—Flow Chart for the Algorithm Developed in This Research

Specify T, P, zi, Tci, Pci, ωi, NC, and BIPs, set iteration number k = 1 

Set Ns sampling compositions, xj ,  for j = 1, .., Ns

No

‘NP − 1’ Feasible RR?

Calculate DRj with z as the reference composition, and select sample
composition with minimum DR as the initial reference composition, xr

Calculate Kj   ,  recalculate DRj with xr   , set NU as the number of sampling point with DRj > 0, NP = NS – NU

Yes

Yes

Calculate θj    from Eq. 4 
and calculate xj    for set U

Yes

NP = 1?

Perform convex minimization to solve 
Eq. 3 for βj   , and xj    for set P 

Update NS and NU.
NP = NS − NU

θj   < 0 for set U?(k)

(k)

(k)

(k) (k)

(k)

(k) (k)

(k)

βj   < 0 for set P?(k)

(k) (k) (k) (k) (k) (k) (k)

||xp    − xq   ||∞ <εx

||Inxj     ϕj    −  Inxr    ϕr    ||∞ < ε
x
?

Update NP, and 
update xr    if βr   < 0

Update xr    to the sampling point 
with min θj    and update NP

No

Yes

No

No

Output θj   ,βj   , xj
Yes No

Exclude sampling composition from set P with the
largest DR among the set P. Update NP. NU = NS – NP. 

YesNo

Yes

No

No

YesSet z as the reference composition. NS is increased by one. 
Calculate Kj   , DRj, NP, and NU.

NP = 1?

NP = 1?

No

Yes

‘NP − 1’ Feasible RR?

Update Kj    for j = 1, 2, .., NS, j ≠ r
k = k + 1 

(k)

(k)

(k)

(k ) (k)

(k)

(k) (k)

Appendix C—Initialization of Sampling Compositions Used in This Paper

The algorithm developed in this research attempts to find stationary points of TPD that give the global minimum of the Gibbs free
energy for the fluid under consideration with a specified z, P, and T. One of the most important factors that affect global convergence of
the algorithm is how iterative sampling compositions are distributed in composition space. If no reliable information is available regard-
ing equilibrium phase compositions for the fluid of interest at specified conditions, sampling compositions should be distributed in com-
position space in a certain systematic manner. Ideally, they are expected to find all stationary points of TPD. Such a possibility is
generally expected to increase as more sampling compositions are used, unless they are placed close to each other.

Here, we present the procedure used in this paper to distribute sampling compositions uniformly with respect to the specified z, for
the initialization of the algorithm developed. First, NC sampling compositions are placed near the NC vertices of composition space. If
more sampling compositions are desired, the composition space is divided into NC different regions that have the overall composition z
as the common vertex. Each of the NC regions is defined by this common vertex z and the other (NC–1) vertices among NC vertices of
pure components. Then, a systematic procedure is applied to distribute sampling compositions around the central point for each of the
NC regions. The number of sampling compositions placed in each region can be defined individually, or correlated with the relative size
of that region to the entire composition space, as described later. A stepwise description is given here.

Step 1. Distribute NC sampling compositions near the NC vertices of composition space (e.g., 99.9% that component and 0.1% the
equimolar mixture of the other components).

Step 2. If more sampling compositions are desired, the composition space is divided into NC different regions (Ri for i¼ 1, 2,…,
NC) that have the overall composition z as the common vertex. Each of the NC regions is defined by z and the other (NC–1) vertices
among NC vertices of pure components. Then, define the number of sampling compositions NSi�1 (i¼ 1, 2,… NC) for Ri (i¼ 1, 2,…,
NC). Set i¼ 1.

Step 3. For the ith region Ri, calculate the arithmetic mean of the NC compositions, z and (NC–1) pure components. This corre-
sponds to the central point in Ri, and becomes a sampling composition. Then, connect the central point with the NC vertices of Ri. This
results in NC lines in Ri.
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Step 4. For Ri, evenly divide each of the NC lines obtained from Step 3 into r1i segments (r1i�1). This results in (r1i–1)NC sam-
pling compositions within Ri.

Step 5. If r1i�2, construct (r1i–1)NC(NC–1)/2 lines that are parallel to edges of composition space by connecting sampling compo-
sitions obtained from Step 4.

Step 6. Evenly divide the (r1i–1)NC(NC–1)/2 lines obtained from Step 5 into r2i segments (r2i�1). This results in (r1i–1)(r2i–1)-
NC(NC–1)/2 sampling compositions within Ri.

Step 7. Repeat Steps 3 through 6 for the next region until sampling compositions are distributed for all NC regions defined in Step
2. That is, increase i by one, where i�NC. Go back to Step 3.

The first step gives NC sampling compositions. Step 3 gives one sampling composition at the center for each region; hence, NC

sampling compositions in the NC regions. Steps 4 and 6 give (r1i–1)NC and (r1i–1)(r2i–1)NC(NC–1)/2 sampling compositions, respec-
tively, for each region. Therefore, the total number of sampling compositions distributed by use of the procedure given above is
NCþRi[1þ(r1i–1)NCþ(r1i–1)(r2i–1)NC(NC–1)/2] for NC�2. The minimum NS is 2NC (NC�2) when r1¼ 1 for all regions; i.e., NC com-
positions from Steps 1 and 3.

In Step 2, NSi (�1) for Ri (i¼ 1, 2,…, NC) can be correlated with the size of Ri relative to the entire composition space as follows.

Step 2-1. Calculate nSi ¼ zn
i

.XNC

i¼1
zn

i

� �
ðNSmax � NCÞ, where NSmax is the maximum number of initial sampling compositions

specified by the user. The exponent n can be also specified.

Step 2-2. Solve nSi¼ (r1–1)NCþ(r1–1)(r2–1)NC(NC–1)/2 for r1 and r2 subject to a certain constraint regarding r1 and/or r2, such as
r2¼ r1–1, which is used in this paper.

Step 2-3. Round down r1 and r2 to make them integers, r1i and r2i. Calculate NSi¼ 1þ(r1i–1)NCþ(r1i–1)(r2i–1)NC(NC–1)/2. Note

that NS¼NCþ
XNC

i¼1
NSi�NSmax because of the rounding of r1 and r2.

As an example, Fig. C-1 shows the sampling compositions distributed by use of the previously discussed procedure (Steps 1 through
7) for NC¼ 3, NSmax¼ 100, and n¼ 1 along with the constraint r2¼ r1–1. The resulting NS is 81, which consists of three compositions
near the pure components, three at the centers of three regions, and 75 in the largest region defined by z and Components 2 and 3.

This is merely one of many possible procedures to systematically distribute sampling compositions; it is not the purpose of Appen-
dix C to single out a procedure that yields rapid convergence of the algorithm. When reasonable estimates are available for potential
phase compositions, they can be used to initialize the algorithm.

Appendix D—Movement of Sampling Compositions for Cases 1 and 2

Here, we show how sampling compositions move in composition space during the iteration with the new algorithm for Cases 1 and 2.
The EOS parameters and solutions for these cases were discussed in the Case Studies section.

Case 1. Case 1 was a ternary mixture consisting of H2O, C3, and n-C16 at 560 K and 65 bar (Tables 1 and 2). The convergence behavior
of the new algorithm was presented in Fig. 4. Fig. D-1 shows the movement of sampling compositions at selected iteration steps. In
Fig. D-1, a star represents the overall composition. Solid squares represent the sampling compositions in set U. The reference composi-
tion in set P is shown by a solid diamond, and the other sampling compositions in set P are hollow squares. This symbolic notation is
used throughout this appendix.

After the initialization, six sampling compositions are distributed in composition space, in which three are near compositional verti-
ces and the other three are in the central points of each area, as can be seen in Fig. D-1a. All six sampling compositions are updated sig-
nificantly after the first iteration, where three sampling compositions are set U with positive h values. Figs. D-1b and D-1c show that
the six compositions do not merge (i.e., NS remains six) during the second and third iterations, but the reference composition is adap-
tively selected on the basis of Step 7 of the new algorithm. That is, the composition with negative h value is selected as the reference
composition during the iterations.

After the fourth iteration, a composition in set U merges into a composition in set P, resulting in NP¼ 5 and NU¼ 0 (Fig. D-1e). The
reference composition used from iteration step 4 until the final convergence is in the vicinity of the equilibrium L1 phase. Two composi-
tions merge during iteration step 5, which gives NS¼ 3. The correct NS¼ 2 (i.e., NP¼ 2 and NU¼ 0) is identified at the seventh iteration.
As can be seen in Figs. D-1g and D-1h, the compositions in set P at the seventh iteration are in the vicinity of the final equilibrium com-
positions. The converged compositions in set P are connected by the tie line in Fig. D-1h.

Component 1

Component 2 Component 3

Overall composition

Fig. C-1—Sampling compositions distributed for NC 5 3 by use of the procedure given in Appendix C. The resulting NS is 81 with
NSmax 5 100, n 5 1.0, and the constraint r2 5 r1–1.
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Fig. D-2 shows the motion of the sampling compositions by use of a triangular prism, where each horizontal cross section represents
the ternary diagram at a certain iteration step. The same iteration steps as Fig. D-1 are presented. The merging of sampling compositions
can be seen at the fourth, fifth, and seventh iteration steps.

Case 2. Fig. D-3 presents the motion of sampling compositions for the binary mixture consisting of 97% C1 and 3% H2S at 190 K and
40.53 bar (Tables 3 and 4). The convergence behavior was presented in Fig. 6.

H2O

C3n-C16

H2O

C3n-C16

H2O

C3n-C16

H2O

C3n-C16

H2O

C3n-C16

H2O

C3n-C16

H2O

C3n-C16

H2O

C3n-C16

(a) After the initialization (NU = 4 and NP = 2) (b) After the 1st iteration (NU = 3 and NP = 3)

(c) After the 2nd iteration (NU = 2 and NP = 4) (d) After the 3rd iteration (NU = 2 and NP = 4)

(e) After the 4th iteration (NU = 0 and NP = 5) (f) After the 5th iteration (NU = 1 and NP = 2)

(g) After the 7th iteration (NU = 0 and NP = 2) (h) After the 21st iteration (NU = 0 and NP = 2)

Fig. D-1—Movement of sampling compositions for Case 1. A star represents the overall composition. Solid squares represent the
sampling compositions in set U. The reference composition in set P is shown by a solid diamond, and the other sampling compo-
sitions in set P are hollow squares. (a) After the initialization (NU 5 4 and NP 5 2); (b) after the first iteration (NU 5 3 and NP 5 3); (c)
after the second iteration (NU 5 2 and NP 5 4); (d) after the third iteration (NU 5 2 and NP 5 4); (e) after the fourth iteration (NU 5 0
and NP 5 5); (f) after the fifth iteration (NU 5 1 and NP 5 2); (g) after the seventh iteration (NU 5 0 and NP 5 2); (h) after the 21st itera-
tion (NU 5 0 and NP 5 2).
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NS¼ 5 is identified after initialization. Early in the iteration, compositions often switch between sets P and U while smoothly
changing their compositions. From the seventh iteration on, the compositions in set U move toward the L1-like composition (the left
lobe in Fig. 5). The number of sampling compositions in set U, NU, reduces from three to two to one at iteration steps 7, 10, and 31,
respectively. From the 31st iteration on, the correct NS¼ 3 (NP¼ 2 and NU¼ 1) is maintained until the final convergence at the
92nd iteration.
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(a) Iteration steps from 1 through 23 (b) Iteration steps from 24 through 92

Fig. D-3—Movement of sampling compositions for Case 2. (a) Iteration Steps 1 through 23; (b) Iteration Steps 24 through 92.
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Fig. D-2—Triangular prism to present sampling compositions at selected iteration steps for Case 1.
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