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Abstract

The conventional approach to multiphase flash is the sequential usage of stability and flash calculations.
It is a series of local minimizations of the Gibbs free energy, in which a false solution is obtained from
fugacity equations for a fixed number of phases and corrected in the subsequent stability analysis. The
robustness and efficiency of multiphase flash have been important issues to be resolved for compositional
reservoir simulation with complex phase behavior.

This paper presents a new algorithm to solve the correct set of equations for global minimization of the
Gibbs free energy for isothermal, isobaric, multiphase flash. The Peng-Robinson equation of state with the
van der Waals mixing rules is used for thermodynamic properties.

The number of equilibrium phases is part of the solution in the new algorithm, in contrast to the
sequential stability/flash approach. Therefore, false solutions are not necessary for multiphase flash with
the new algorithm. The advantage of the new algorithm in terms of robustness and efficiency is more
pronounced for more complex phase behavior, in which multiple local minima of the Gibbs free energy
are present. It is straightforward to implement the algorithm because of the simple formulation, which also
allows for an arbitrary number of initial compositions.

Introduction
A multiphase equilibrium calculation requires global minimization of the Gibbs free energy subject to
material balance. The conventional algorithms after Michelsen (1982a, 1982b) are based on the sequential
usage of phase-stability and flash calculations. That is, a phase-stability calculation is performed for a
composition, at which the tangent plane to the Gibbs free energy surface is defined. If it detects phase
instability, a flash calculation is performed under the assumption that one more equilibrium phase is
present.

This conventional approach has been successfully applied for various compositional flow problems in
the literature (e.g., Mehra et al. 1983; Nghiem and Li 1984; Perschke 1988; Han and Rangaiah 1998).
However, it is a series of local solutions for assumed numbers of phases, which requires obtaining and
correcting false solutions for multiphase problems. Correction of false solutions in phase-stability analysis
is highly sensitive to the initial guess used for the search for potential equilibrium phases. Also, it is not
always possible to obtain reasonable initial K values for multiphase reservoir fluids.
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For example, three different types of two equilibrium phases (L1 � V, L1 � L2, and L2 � V) exist in
composition space that contains three equilibrium phases (L1 � L2 � V), where L1 and L2 and V stand
for the oleic, solvent-rich liquid, and gaseous phases, respectively. When L1 � L2 or L2 � V is of the
global minimum in the Gibbs free energy at the specified flash conditions, the conventional algorithms
initiated with Wilson’s correlation often fail to converge to the correct solution, or tend to be attracted by
local minima before reaching it through negative flash.

One way to improve the robustness of multiphase flash is to use multiple initial guesses in phase-
stability analysis as given in Michelsen (1982b), Perschke (1988), and Li and Firoozabadi (2012).
However, it still requires obtaining and correcting false solutions, which are near local minima of the
Gibbs free energy subject to material balance. Many stability calculations with different initial guesses can
be required to obtain merely a false solution in multiphase flash.

Gupta et al. (1991) presented a novel methodology to perform phase-stability and flash calculations
simultaneously. However, a few researchers (Abdel-Ghani 1995; Alsaifi and Englezos 2011) reported
numerical issues associated with degenerate equations near phase boundaries on the basis of Gupta et al.’
formulation. It has been also found that the initialization scheme proposed by Gupta (1990) and Gupta et
al. (1991) often fails for multiphase problems. Even when it starts the iteration, the original algorithm of
Gupta et al. is not robust since it does not check the feasibility of each Rachford-Rice (RR) solution.

This paper presents the correct set of equations and constraints that can be easily solved for
minimization of the Gibbs free energy for isothermal isobaric flash. The main novelty lies in the unified
usage of the tangent-plane distance function (Baker et al. 1982; Michelsen 1982a) for multiphase flash
integrated with stability analysis for an arbitrary number of iterative compositions. A new algorithm is
developed for minimization of the Gibbs free energy on the basis of successive substitution augmented
with some important steps for robustness. Case studies are given to demonstrate the robustness of the
developed algorithm.

Algorithm
This section presents a new algorithm for global minimization of the Gibbs free energy as formulated in
Appendix A. A step-wise description is presented along with key equations. The corresponding flow chart
is given in Appendix B.

The developed algorithm uses the tangent plane distance equations

(1)

to update all iterative compositions xij (i � 1, 2, . . ., NC and j � 1, 2, . . ., NS) through K values on
the basis of successive substitution. NC is the number of components, and NS is the number of sampling
compositions at which phase stability is measured during the iteration. The fugacity coefficient of
component i at sampling composition j is denoted as �ij. A reference composition is expressed as xir (i �
1, 2, . . ., NC). K values are defined as

(2)

for i � 1, 2, . . ., NC, and j � 1, 2, . . ., NS except for r.
At an equilibrium state upon convergence, equation 1 becomes equation A-6; i.e., �j � Dj and the

reference composition corresponds to one of equilibrium phases, which is denoted as xiRef in Appendix
A. NP equilibrium phases satisfy Dj � 0 along with equations A-2, A-3, and A-4 for j � 1, 2, . . ., NP.
NU unstable stationary points satisfy Dj � 0 and equation A-4 for j � (NP � 1), (NP � 2). . ., NS, where
NS � NP � NU.

During the iterations, NS sampling compositions belong to either the equilibrium set P or the unstable
set U. In set P, �j � 0 and �j � 0 for j � 1, 2,. . . , NP. In set U, �j � 0 and �j � 0 for j � (NP � 1),
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(NP � 2). . ., NS. Successive substitution is performed to solve equation 1 together with equations A-2,
A-3, and A-4 for K values. The reference composition is selected from set P adaptively, as described later.

For set P, equation 2 becomes Kij � xij/xir. The conventional RR equations give the relationship
between K values and mole fractions of apparent phases (�j’s) as follows:

(3)

for sampling point j � r within set P, where for i � 1, 2, . . ., NC.

Compositions are given as xir � zi/ti and xij � Kijxir for sampling point j � r.
For set U, the summation constraint �ixij � 1.0 gives

(4)

for sampling composition j within set U. Compositions for set U are given as Xij � e�jKijXij for i �
1, 2, . . ., NC.

The fundamental structure of the current algorithm broadly follows the traditional successive substi-
tution algorithms for flash and stability analysis. That is, each iteration first solves equations 3 for
compositions for set P for a given set of K values and overall composition. Then, equation 4 is used to
obtain compositions for set U for a given set of K values and reference composition. After that, K values
are updated for sets P and U by use of equation 1, lnKij�ln�ir-ln�ij.

The main difference from the conventional flash and stability analysis lies in the unified usage of the
tangent plane distance equations (equation 1) for an arbitrary number of sampling compositions. This
gives the flexibility in terms of robustness and efficiency that the algorithm offers; e.g., use of more
sampling compositions increases the level of robustness at the expense of the increased number of
equations, at least for the initial stage of iteration.

With the well-known convergence behavior of successive substitution (Mehra et al. 1983; Ammar and
Renon 1987; Kaul 1992), sampling compositions converge to stationary points on the tangent plane
distance function at an equilibrium state. As will be discussed later, sampling compositions naturally
merge for a case in which NS is greater than the number of stationary points present upon convergence.

NS sampling compositions can be initialized by a biased or unbiased distribution in composition space.
Biased initialization methods include use of a correlation suitable for the fluid of interest, such as Wilson’s
correlation, Li and Firoozabadi (2012), and Zhu and Okuno (2015b), and use of certain information from
the previous time-step in flow simulation. Unbiased initialization methods include a random distribution
and a distribution near vertices in composition space. The unbiased methods are useful when no reliable
information is available for equilibrium phases of the fluid of interest.

A reference composition is also initialized to define equation 1. First, function D (equation A-5) is used
for NS sampling compositions with the overall composition as the reference. Then, the initial reference
composition is defined at which D is the minimum among the NS sampling compositions.

Other important steps for robustness include the feasibility check for each RR solution by use of the
method of Okuno et al. (2010). Also, the constraints regarding �j and �j described previously are used for
classification of sampling compositions for sets P and U.

The Peng-Robinson (PR) EOS (Peng and Robinson 1976a, 1976b) with the van der Waals mixing rules
is used to calculate thermodynamic properties in this research. A stepwise description of the algorithm is
given below.

Step 1. Set NS sampling compositions for j � 1, 2,. . . , NS by a certain initialization scheme as

described previously. The number in the bracket represents the iteration-step number; k � 1 for the
initial iteration.
Step 2. Calculate Dj for j � 1, 2,. . . , NS with as the reference composition from equation A-5. Select
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the sampling composition with the minimum D value as the reference composition, . Initialize K

values, , by use of lnKij�ln�ir-ln�ij for j � 1, 2,. . . , NS except for r. Recalculate Dj with and

set NU as the number of sampling compositions with positive D values. NP � NS – NU. If NP � 1, go
to step 6. Otherwise, continue to step 3.
Step 3. Check the feasibility of the RR solution for set P. If feasible, go to step 5. Otherwise, continue
to step 4.
Step 4. Exclude from set P as many sampling compositions as required until the feasibility is satisfied
for the given RR problem. Update NP. NU � NS – NP. If NP � 1, go to step 6. Otherwise, continue
to step 5.
Step 5. Perform the convex minimization to obtain and �(k)

j for set P that satisfy equation 3, as

presented in Okuno et al. (2010). The convergence criterion is that .
Step 6. Obtain and �(k)

j for set U by use of equation 4.

Step 7. Check to see if there is any �(k)
j that is negative in set U. If so, update and NU. NP � NS

– NU. Go to step 10. Otherwise, continue to step 8.
Step 8. Check to see if there is any �(k)

j that is negative in set P. If so, perform necessary updates for
and NU. NP � NS – NU. Go to step 10. Otherwise, continue to step 9.

Step 9. Check for convergence. Stop if . Otherwise, continue to step 10.

Step 10. Check to see if there are any compositions to be merged on the basis of the criterion that the
max norm for two compositions is less than �x (e.g., �x � 10-3). If so, perform necessary updates for
NS and NU. NP � NS – NU.
Step 11. Update K values by use of equations 1 and 2; i.e., lnK(k�1)

ij � ln�(k)
ir - ln�(k)

ij for i � 1, 2,
. . ., NC and j � r. Increase the iteration-step index by one; k � k � 1. Go to step 6 if NP � 1.
Otherwise, go to step 3.

In step 4, the exclusion of sampling compositions from set P is performed on the basis of their Dj values
from equation A-5. That is, the sampling composition with the largest Dj value among set P is first
excluded. The subsequent exclusions, if necessary, are in the order of decreasing Dj. If step 4 is taken in
the first iteration (k � 1), the Dj values calculated in step 2 are directly used.

In step 7, the sampling composition with the minimum �j value is selected for updating . In step 8,
a sampling composition with 0 � �j � 1 is selected for updating .

The algorithm presented above is substantially different from that of Gupta et al. (1991). An important
difference comes from the difference in formulation; that is, they introduced an additional set of equations,
�j� j � 0, which were called “stability equations” in their papers. A similar set of equations, �j� j/(� j �
�j) � 0, were then solved simultaneously with the RR equations in their algorithm. However, Appendix
A clearly shows that the complete formulation does not require Gupta et al.’s stability equations. The
correct set of equations in the current paper does not have the degeneracy issues that Gupta et al.’s
algorithm exhibits near phase boundaries due to their stability equations, as reported by Alsaifi and
Englezos (2011).

The robustness of the current algorithm also comes from the careful initialization and adaptive
selection of the reference composition. The initialization scheme of Gupta (1990) eliminates the sampling
compositions that have positive D values from equation A-5 with as the reference composition.
However, this often leads to a complete failure of the calculation. The improvements over Gupta et al.
(1991) were developed by following the fundamental theory behind the formulation (see Appendix A) that
the lowest Gibbs free energy should be searched for in composition space.

The simplicity of the formulation has led to the straightforward iteration steps, which are essentially
the widely-used successive substitution. Unlike in other publications following Gupta et al. (1991), such
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as Abdel-Ghani (1995), Chaikunchuensakun et al. (2002), and Alsaifi and Englezos (2011), the robust
solution of multiphase RR equations (Okuno et al. 2010) further enhances the robustness of the current
algorithm.

Case Studies
In this section, case studies are given to demonstrate the robustness and simplicity of the algorithm
developed in this research, in comparison with the sequential method and the method of Gupta et al.
(1991). The new algorithm can make multiphase flash problems straightforward by not having to solve
for and correct false solutions.

In the sequential method used for this section, single-phase stability analysis is performed with two
initial guesses, searching for a V-like phase first and a L-like phase next, on the basis of Wilson’s K values
(Michelsen 1982a). For stability analysis for one of multiple phases, initial guesses recommended by
Firoozabadi (1999) are used in addition to the V-like and L-like guesses, in the following order: a V-like
phase, a L-like phase, compositions near vertices in composition space, the midpoint of phase composi-
tions, and �iXi for i � 1, 2,. . . , NC. Stability analysis in this section uses only successive substitution for
the fair comparison between the new and conventional algorithms in terms of robustness. The conver-
gence criterion for stability analysis is that the max norm of stationarity equations is less than 10-8.

For flash calculations in the sequential method used for this section, two numerical schemes have been
tested: use of only successive substitution, and the combination of successive substitution and Newton’s
minimization of the Gibbs free energy. The convergence criterion used is that the max norm of fugacity
equations is less than 10-12. The switching criterion from successive substitution to the minimization
algorithm is that the max norm of fugacity equations is less than 10-3. However, the two sets of numerical
schemes have given the same solutions for the sequential method in the cases tested in this section.

For the new algorithm, initial sampling compositions are distributed near vertices of composition space
for cases 1 and 4, but also randomly distributed for Cases 2 and 3 using a random-number generator. This
flexibility in initialization is one of the advantages over the conventional algorithms, as discussed in the
previous section.

Case 1

This case uses ternary mixtures of H2O, C3, and n-C16 to show a few important features of the new
algorithm. The properties used for the components are given in Table 1. Figure 1 shows the two- and
three-phase regions in composition space at 430 K and 35 bars. In the figure, L, V, and W represent the
oleic, gaseous, and aqueous phases, respectively.

Table 1—Properties of the components for case 1

Component PC (bar) TC (K) �

H2O 220.89 647.3 0.344

C3 42.46 369.8 0.152

n-C16 14.19 717.0 0.742

Binary Interaction Parameters

H2O C3 n-C16

H2O 0.0000 0.6841 0.3583

C3 0.6841 0.0000 0.0000

n-C16 0.3583 0.0000 0.0000

SPE-175060-MS 5
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Application of the algorithm along the mixing line between (0.0, 0.9, 0.1) and (0.9, 0.0, 0.1) results in
the behavior of �j and �j shown in Figure 2. One unstable stationary point (in set U) is observed in the
two-phase regions (L � V and L � W) along the mixing line. As mentioned in the algorithm section, the
converged �values correspond to the dimensionless tangent plane distances at stationary points (see
equation A-6). The converged �(or D) values qualitatively indicate the level of instability at the
corresponding compositions. Hence, the new algorithm provides more global information about the Gibbs
free energy than the conventional flash algorithms, when it converges with unstable stationary points.
Unlike the current algorithm, the negative flash approach (Whitson and Michelsen 1989) may indicate
phase instability by negative �values, when obtaining a false solution.

Figure 1—Phase boundaries for the ternary system of H2O, C3, and n-C16 at 430 K and 35 bars. L, V, and W stand for the oleic, gaseous,
and aqueous phases, respectively. Properties of the components are given in Table 1
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Figure 3 shows the Gibbs free energy and converged tangent planes for three overall compositions
with the H2O concentrations of 0.10, 0.75, and 0.84 along the mixing line. The algorithm has successfully
converged to the lowest Gibbs free energy subject to material balance for each overall composition. The
D values at unstable stationary points in Figure 3 can be confirmed with Figure 2.

Figures 1, 2, and 3 clearly show that different sets of equilibrium phases can be easily calculated as
thermodynamically stable stationary points by use of the unified algorithm that directly converges to the
correct solution. It was observed that distributed sampling compositions (e.g., six compositions) naturally
merge to three stationary points corresponding to the L, V, and W phases on the Gibbs free energy surface
given in Figure 3. The convergence behavior is determined by the traditional successive substitution as
described in the previous section. An illustrative figure for such a case is available upon request along with
input data.

Figure 2—Variation of parameters with the new algorithm applied along the mixing line given in Figure 1. (a) Phase mole fraction. (b)
Stability variable
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Figure 3—Gibbs free energy surface and converged tangent plane along the mixing line given in Figure 1. (a) zH2O � 0.1. (b) zH2O �
0.75. (c) zH2O � 0.84
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Case 2
The simplicity of the formulation and algorithm in this research yields the robustness in multiphase flash
by not having to obtain false solutions. The advantage over the conventional sequential methods is
pronounced when the correct solution in a multiphase calculation does not include either the L1 or V
phase, which can frequently occur in many gas and steam injection processes with multiple partially
miscible phases.

This case uses the binary of C1 and H2S at 190 K and 40.53 bars to show several issues of the
sequential methods and the robustness of the new algorithm. Table 2 gives the properties of the
components. The Gibbs free energy surface in composition space exhibits three lobes corresponding to the
L1, L2, and V phases in the order of increasing C1 concentration (zC1) (Figure 4). The new algorithm is
initialized with three sampling compositions; two of them are distributed near vertices of composition
space and the other is a randomly selected point. The sequential method fails to find the correct solutions
with L2 � V for zC1 from 0.968 to 0.982.

For 0.968 � zC1 � 0.980, the sequential algorithm only finds an L phase in the single-phase stability
analysis, and the subsequent two-phase flash results in a local minimum with L1 � V. Then, the stability
analysis for one of the two phases finds an L2 phase. However, three-phase flash is not feasible for a
binary mixture, due to the degree of freedom of one. Hence, the final result from the sequential algorithm
is the L1 � V phases that have been obtained. Table 3 shows the correct solution from the new algorithm
and the incorrect solution from the sequential method at zC1 of 0.970. The new algorithm does not need
to perform three-phase flash to reach the correct two-phase solution (L2 � V). The converged Gibbs free
energy from the new algorithm, -0.539476213, is confirmed to be lower than the value, -0.537697750,
from the sequential method.

Table 2—Properties of the components for case 2

Component PC (bar) TC (K) � BIP

C1 46.0016 190.6 0.008 0.00

H2S 89.3686 373.2 0.1000 0.08

Figure 4—Gibbs free energy surface in composition space for the binary system of C1 and H2S. Properties of the components are given
in Table 2. The temperature and pressure are 190 K and 40.53 bar, respectively. The three lobes indicated correspond to the L1, L2, and
V phases in the order of increasing C1 mole fraction in composition space
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For 0.980 � zC1 � 0.982, the sequential algorithm fails to find phase instability in single-phase
stability analysis. However, the new algorithm properly converges to the L2 and V phases. Table 4 shows
the solution for zC1 of 0.980. The Gibbs free energy at the solution, -0.492028012, is confirmed to be
lower than the single-phase Gibbs free energy -0.491838307.

Even if the degree of freedom is more than one for the sequential method, it has been observed that
the sequential method initiated with Wilson’s K values tends to fail to find the correct solution that does
not involve the L1 or V phase. An example is the ternary mixture of 60 mol% CO2, 12 mol% C1, and 28
mol% n-C20 at 250 K and 38 bars. Three phases of L1, L2, and V are present in composition space, and
the overall composition in the L1-L2 region is located in the vicinity of the tie triangle. The sequential
method cannot find phase instability in the two-sided stability analysis with the V and L estimates from
Wilson’s correlation.

Case 3
This case presents the complex phase behavior calculated for H2O, n-C4, and bitumen at 417 K and 35
bars. The components’ properties are given in Table 5. Two different types of three-phase equilibria are
present in composition space; one is L1 � L2 � V and the other is W � L1 � V. Each of the two-phase
edges of the tie triangles forms a two-phase region. Therefore, a flash calculation within this composition
space may experience several local minima before reaching the correct solution. The difficulty depends
on the quality of the initial estimates used for phase compositions, or K values. However, no established
correlations are available for K values involving the L2 phase (Zhu and Okuno 2015a).

Table 3—Results for case 2 with the new and conventional algorithms. Properties of the components are given in Table 2. The
overall composition is 97% C1 and 3% H2S. The specified temperature and pressure are 190 K and 40.53 bar

New Algorithm Conventional Algorithm

Component L1 V L2 L1 V

C1 0.18634266482 0.98268738632 0.93604368336 0.12587785433 0.97953528887

H2S 0.81365733518 0.01731261368 0.06395631664 0.87412214567 0.02046471113

� 0 0.7280 0.2720 0.0112 0.9888

� 0.1323 0 0 - -

GR/RT -0.53947621262 -0.5376977504

Table 4—Solution for case 2 with the new algorithm. Properties of the components are given in Table 2. The overall composition is
98% C1 and 2% H2S. The specified temperature and pressure are 190 K and 40.53 bar. The correct set of three phase compositions
is identical to the one presented in Table 3. The conventional algorithm fails to find phase instability in single-phase stability analy-

sis for this flash calculation

Component L1 V L2

� 0 0.9424 0.0576

� 0.1323 0 0

GR/RT -0.492028012
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The overall composition of 2 mol% H2O, 95 mol% n-C4, and 3 mol% bitumen yields L1 � L2 � V.
The new algorithm was initiated with randomly-selected three sampling compositions and three compo-
sitions near the vertices of composition space. It converged to the correct solution (Table 6) after 136
iterations. The converged tangent plane gives four stationary points, out of which one unstable compo-
sition near 100% H2O has the �(or D) value of 0.6272.

The sequential method results in the same solution through a false solution in two-phase flash. The
two-sided stability analysis for the overall composition takes 304 iterations. Then, two-phase flash
requires 123 iterations with successive substitution alone, or 28 iterations with the combination of
successive substitution and Newton’s minimization. After that, one of the two phases is tested for phase
stability. Phase instability is detected with the initial guess of �iXi. The two-phase stability calculations
with five different initial guesses take 446 iterations in total. Finally, three-phase flash requires 120
iterations with successive substitution alone, or 19 iterations with the combination of successive substi-
tution and Newton’s minimization. As shown in this case, the simplicity of the new algorithm is
advantageous for complex phase behavior.

Case 4
This case is to show the importance of the initialization scheme and checking the feasibility in multiphase
RR solution. Mixtures of H2O, C3, and n-C16 are used, for which Table 1 shows the components’
properties.

First, the mixture of 80 mol% H2O, 19 mol% C3, and 1 mol% n-C16 is considered at 566 K and 130
bars, near a critical endpoint. The algorithm of Gupta et al. (1991) results in non-convergence for this case
because the RR solution during the iteration diverges with the following K values: (6.48974 � 10-1,
3.01954 � 103, 4.08377 � 1010) for V � W, and (4.85708 � 10-1, 2.64248 � 103, 2.27912 � 1011) for
L � W. Such divergence occurs when the RR equations are nearly degenerate near a critical endpoint

Table 5—Properties of the components for case 3

Component PC (bar) TC (K) �

H2O 277.15 672.48 0.2699

n-C4 36.01 421.56 0.2127

Bitumen 10.64 847.17 1.0406

Binary Interaction Parameters

H2O n-C4 Bitumen

H2O 0.000 0.560 0.110

n-C4 0.560 0.000 0.075

Bitumen 0.110 0.075 0.000

Table 6—Solution for case 3 with the new algorithm. Properties of the components are given in Table 5. The overall composition is
2% H2O, 95% n-C4, and 3% bitumen. The specified temperature and pressure are 417 K and 35 bar. The conventional algorithm con-

verges to the same solution at the expense of a large number of iterations in sequential stability and flash calculations

Component W L1 L2 V

H2O 9.99E-01 0.02757144227 0.01722624506 0.03886906998

n-C4 2.21E-11 0.77654778633 0.96351359109 0.96099473155

Bitumen 0 0.19588077141 0.01926016386 0.00013619847

� 0 0.0710 0.8348 0.0942

� 0.6272 0 0 0

GR/RT -0.95634664

SPE-175060-MS 11

D
ow

nloaded from
 http://onepetro.org/SPEATC

E/proceedings-pdf/15ATC
E/3-15ATC

E/D
031S043R

007/1382013/spe-175060-m
s.pdf by The U

niversity of Texas At Austin user on 17 M
ay 2022



(Zhu and Okuno 2015b). It is crucial to control Newton’s step size to keep the feasibility in RR solution,
as in Okuno et al. (2010). The new algorithm converges to the correct solution shown in Table 7 in 8
iterations with no difficulty.

A second example is the mixture of 87 mol% H2O, 3 mol% C3, and 10 mol% n-C16 at 574.5 K and
125 bars. The new algorithm converges to the correct solution given in Table 8 in 6 iterations. However,
it requires the proper initialization of RR solution (see Okuno et al. 2010) when K values are as follows:
(1.21887, 9.31203 � 10-4, 3.40328 � 10-10) for V � W, and (6.31210 � 10-1, 1.45442, 1.16067 � 101)
for L � W. If the simplistic selection is made for initial �values, 1/3, for the three phases, the RR solution
results in divergence. However, Gupta et al. (1991) did not discuss how to initialize a RR solution.

A third example is the mixture of 75 mol% H2O, 15 mol% C3, and 10 mol% n-C16 at 560 K and 65
bars. For this mixture, the initialization scheme proposed by Gupta (1990) results in a RR problem with
an open feasible domain, resulting in the failure in initialization. The new algorithm initialized with
sampling compositions distributed near the vertices of composition space converges to the solution given
in Table 9 in 32 iterations. Two of the three sampling compositions that are initially present merge into
the V phase at the 12th iteration. Unlike in Gupta et al. (1991), the RR routine embedded in the new flash
algorithm is guaranteed to converge to the correct solution. It is important to confirm the existence of the
unique solution for a given multiphase RR problem prior to the iteration as shown in Okuno et al. (2010).

Table 7—Solution for the first mixture of case 4 with the new algorithm. Properties of the components are given in Table 1. The
overall composition is 80% H2O, 19% C3, and 1% n-C16. The specified temperature and pressure are 566 K and 130 bar. The algo-

rithm of Gupta et al. (1991) results in non-convergence because the Rachford-Rice solution during the iteration diverges

Component V W

H2O 0.667919405 0.999888865

C3 0.315472893 0.000111135

n-C16 0.016607701 0

� 0.6021 0.3979

� 0 0

GR/RT -0.823421643

Table 8—Solution for the second mixture of case 4 with the new algorithm. Properties of the components are given in Table 1. The
overall composition is 87% H2O, 3% C3, and 10% n-C16. The specified temperature and pressure are 574.5 K and 125 bar

Component L1 W

H2O 0.501407818 0.999929554

C3 0.114906006 7.04E-05

n-C16 0.383686176 1.11E-11

� 0.2606 0.7394

� 0 0

GR/RT -0.550358484
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Conclusions
This paper presented a new algorithm for global minimization of the Gibbs free energy for isothermal,
isobaric flash. The correct set of equations is solved with successive substitution for stationary points of
the tangent plane distance defined at a reference composition. Conclusions are as follows:

1. The number of equilibrium phases is part of the solution in the new algorithm, in contrast to the
sequential stability/flash approach. Therefore, false solutions are not necessary for multiphase
flash with the new algorithm. The advantage of the new algorithm in terms of robustness and
efficiency is more pronounced for more complex phase behavior, in which multiple local minima
of the Gibbs free energy are present.

2. The new algorithm can be initialized with either a biased or unbiased scheme because it can handle
an arbitrary number of sampling compositions. This also yields the flexibility that the algorithm
offers in terms of robustness and efficiency. For example, one can initialize the algorithm with
more sampling compositions for enhanced robustness by capturing more information regarding the
Gibbs free energy during the iteration. If reasonable estimates are available for equilibrium phases,
one can use the biased initialization to reduce the number of equations to be solved.

3. The new algorithm does not use the stability equations of Gupta et al. (1991) because they are not
necessary with the correct formulation presented in this research.

Nomenclature

Roman Symbols
D� Tangent plane distance
fij � Residual of the tangent plane equations defined in Eq. 1
gj � Residuals of the material balance equations
G � Molar Gibbs free energy
Kij � K value for component i in phase j

� Vector consisting of NC K values
L1 � Oleic phase
L2 � Solvent-rich liquid phase
NC � Number of components
NP � Number of phases
NS � Number of sampling compositions
NU � Number of sampling compositions in set U
P � Equilibrium set or pressure
PC � Critical pressure
r � Reference composition

Table 9—Solution for the third mixture of case 4 with the new algorithm. Properties of the components are given in Table 1. The
overall composition is 75% H2O, 15% C3, and 10% n-C16. The specified temperature and pressure are 560 K and 65 bar. The algo-
rithm of Gupta et al. (1991) fails for this case due to an open feasible domain in the initial RR problem based on their initialization

scheme

Component L1 V

H2O 0.324593359 0.795746207

C3 0.095516095 0.15585894

n-C16 0.579890546 0.048394853

� 0.0971 0.9029

� 0 0

GR/RT -0.967879426
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R � Universal gas constant
T � Temperature
TC � Critical temperature
U � Unstable set
V � Vapor or gaseous phase
W � Aqueous phase

� Vector consisting of NC concentrations
xij � Mole fraction of component i in phase j
zi � Overall mole fraction of component i
Greek Symbols
�j � Mole fraction of phase j
� � Small number used for convergence test (e.g., 10-12)
�ij � Fugacity coefficient of component i in phase j
� � Acentric factor
� � Stability variable
Subscripts
C � Critical property
i � Component index
j � Phase index
L � Oleic phase
mix � Mixing
P � Phase
r � Reference composition
R � Reduced property
Ref � Reference phase
S � Sampling composition
U � Unstable
V � Vapor phase
W � Aqueous phase
Superscripts
k � Index for iteration steps
R � Reduced property
Abbreviation
BIP � Binary interaction parameter
EOS � Equation of state
PR � Peng-Robinson
RR � Rachford-Rice
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Appendix A

Formulation for Global Minimization of the Gibbs Free Energy

The correct phase equilibrium for a given P, T, and zi (i � 1, 2, . . ., NC) is defined by xij (i � 1, 2, . . ., NC and j �1, 2, . . .,
NP) that gives the global minimum of

(A-1)

where P is pressure, T is temperature, zi is the overall mole fraction of component i, xij is the mole fraction of component
i in phase j, �j is the mole fraction of phase j, NC is the number of components, and NP is the number of equilibrium phases.
The following constraints are to be satisfied:

(A-2)

(A-3)

(A-4)

where �j � 0 and xij � 0 for i � 1, 2, . . ., NC and j �1, 2, . . ., NP.
The tangent plane to the Gibbs free energy surface at a stable equilibrium state cannot lie above the Gibbs free energy

surface at any composition (Baker et al., 1982; Michelsen, 1982a). Therefore,

(A-5)

for j � 1, 2, . . ., NS at a specified T and P. NS is the number of stationary points of the dimensionless tangent plane distance
function, D, defined with a reference equilibrium-phase composition (xiRef, where i � 1, 2, . . ., NC). Note that NS � NP �
NU, where NU � 0 and is the number of unstable stationary points of D. Equation (A-5) can be also written as

(A-6)

because the gradients of D in composition space are zero at a stationary point.
The unified formulation for phase-stability and flash calculations in the current paper is to find a set of xij (i � 1, 2, . . .,

NC, and j �1, 2, . . ., NS) such that Dj � 0 subject to equations A-2, A-3, and A-4 for equilibrium phases j � 1, 2, . . ., NP,
and Dj � 0 subject to equation A-4 for unstable stationary points j � (NP � 1), (NP � 2). . ., NS. The algorithm presented in
the current paper uses the tangent plane distance function, D, with adaptive selection of the reference composition for an
arbitrary number of iterative compositions, which converge to stationary points with tangent plane distances Dj.
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Appendix B

Flow Chart for the Augmented Successive Substitution
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