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a b s t r a c t

Isobaric, isenthalpic (PH) flash is challenging for multiphase non-isothermal flow simulation using an
equation of state (EOS). This is because the number of equilibrium phases is unknown in temperature
and composition space, and because the system of equations in PH flash becomes nearly degenerate for
narrow-boiling fluids. The term “narrow-boiling” is used in the literature to refer to enthalpy that is
sensitive to temperature.

The primary objective of this research is to develop the multiphase PH-flash algorithm integrated with
stability analysis that resolves the two technical challenges mentioned above. The secondary objective is
to present a new analysis of narrow-boiling behavior by coupling energy and phase behavior equations
through the temperature dependency of K values. The thermodynamic model used is the Peng-Robinson
EOS with the van der Waals mixing rules.

PH flash in this research is formulated by use of the tangent-plane-distance function, in which phase-
split computation is integrated with phase-stability analysis. The formulated PH flash is solved by the
direct-substitution algorithm with an arbitrary number of sampling compositions (NS), at which phase
stability is measured during the iteration. The number of equilibrium phases is not required to be fixed in
the new algorithm.

Results in case studies show that the new algorithm can robustly handle phase appearance/disap-
pearance with narrow-boiling behavior, including the case of one degree of freedom. The algorithm
becomes more robust with increasing NS because the possibility of finding all stationary points of the
tangent-plane-distance function increases. However, the number of iterations required tends to increase
with increasing NS because the algorithmwith more sampling compositions may take more iterations for
merging and adding some of the sampling compositions.

The general condition presented for narrow-boiling behavior is that the interplay between energy
balance and phase behavior is significant. Two subsets of the condition are derived by analyzing the
convex function whose gradient vectors consist of the Rachford-Rice equations; (i) the overall compo-
sition is near an edge of composition space, and (ii) the solution conditions (temperature, pressure, and
overall composition) are near a critical point, including a critical endpoint. A special case of the first
specific condition is the fluids with one degree of freedom. These conditions for narrow-boiling behavior
are demonstrated in case studies.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Numerical solution of isothermal compositional reservoir flow
has been extensively studied [1e20]. For thermal compositional
reservoir flow, however, the literature is relatively scarce [21e31].
Reliable solution of the coupled equations of mass balance, energy
balance, and phase behavior requires a detailed understanding of
and Geosystems Engineering,
et, Stop C0300, Austin, Texas
numerical difficulties that may occur in thermal compositional
simulation. This paper is concerned with two major issues in
isenthalpic flash for thermal compositional simulation with a cubic
equation of state (EOS); one is narrow-boiling behavior and the
other is phase stability analysis.

Narrow-boiling behavior refers to the total enthalpy that is
sensitive to temperature [32e37]. It is related to how the energy
balance affects phase behavior in thermal compositional simula-
tion. The limiting narrow-boiling behavior occurs for fluid systems
with one degree of freedom, for which the enthalpy exhibits a
discontinuity in temperature space [32,33,38e40].

Various researchers reported convergence difficulties associated
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with narrow-boiling behavior in their steam injection simulations
[21,24,38,41]. The difficulties may be better handled in flow simu-
lation with isobaric isenthalpic (PH) flash than with isobaric
isothermal (PT) flash, because in the former type of thermal
simulation formulation [e.g., 21, 38], narrow-boiling behavior is
handled in local flash calculations that are decoupled from the
global mass and energy flow equations. Even in stand-alone flash
calculations, however, robust PH flash for narrow-boiling fluids has
been a technical challenge [21,24,32e38]. It is not well understood
under what thermodynamic conditions narrow-boiling behavior
occurs; this question is addressed as one of the twomain objectives
in this research.

Recently, Zhu and Okuno [36,37] presented a robust direct
substitution (DS) algorithm for PH flash for narrow-boiling fluids,
including those with one degree of freedom. However, they did not
study phase stability analysis in their PH flash. The assumption that
the number of equilibrium phases is known is the major issue to be
resolved for implementation of PH flash in flow simulation.

With the PH specification, the number of equilibrium phases is
unknown not only in composition space, but also in temperature
space. It can be determined at the solution temperature upon
convergence. As presented in Brantferger [21,38], phase stability
with PH specification can be analyzed only at a given temperature,
which is not the equilibrium temperature until convergence.

Although phase stability analysis was not clearly described in
most of the prior publications on thermal compositional simulation
[e.g., 24, 29, 30, 31], it may be performed alternately with flash
calculation for a fixed number of phases [21,38]. As in conventional
PT flash, however, this sequential use of phase-stability and flash
calculations is a series of local solutions, which requires obtaining
false solutions and correcting them until the correct solution is
obtained. Such PH flash becomes more difficult as the number of
equilibrium phases increases because it tends to be attracted to a
larger number of false solutions. It also becomes more difficult for a
narrow-boiling fluid because false solutions at false temperatures
may deviate substantially from the correct solution at the solution
temperature for such a case.

Gupta et al. [33] proposed a novel formulation for PH flash that
combines phase-stability and flash calculations. In their algorithm,
the enthalpy, Rachford-Rice (RR), and stability equations were
solved simultaneously for temperature, phase amounts, and sta-
bility variables. The stability variables of Gupta et al. [33] were
derived from the first-order condition for unconstrained minimi-
zation of the Gibbs free energy as formulated by them. K values
were updated in the outer loop based on the temperature change
that was obtained from the internal iteration loop. It was reported
that their algorithm could handle fluids with one degree of
freedom. This is conceivable because the number of equilibrium
phases is part of the solution in their PH flash [33]. To the best of our
knowledge, the formulation and algorithm of Gupta et al.’s for PH
flash have not been used in the literature since their original pub-
lication [33]. Various issues of their PH flash will be resolved in this
paper, but briefly introduced here.

Firstly, non-convergence can occur when it attempts to solve the
degenerate system of equations for a narrow-boiling fluid without
using the method of Zhu and Okuno [36,37]. When narrow-boiling
behavior occurs, it occurs within a phase region in which the
number of phases is fixed. This is true even for the limiting case of
one degree of freedom, for which the entire phase region of one
freedom is narrow-boiling [e.g., a three-phase region (or point) for
a binary system at a given pressure]. Thus, the coupling of phase-
stability and flash calculations in itself does not necessarily
improve the degeneracy issue associated with narrow-boiling
behavior. Zhu and Okuno [36] presented non-convergence cases
with the conventional PH flash algorithms even if the correct
number of phases was used.
Secondly, it does not even start the iteration when the initial K

values proposed by them yield ill-posed RR problems that have no
solution. Their initial K values often form an unbounded feasible
region for the RR solution. No solution exists for such a case, as
proved by Okuno et al. [9].

Thirdly, their algorithm is initialized with an assumed
maximum number of phases. During the iteration, if some of the
phases (or iterative compositions) become close to one another,
they are added together to decrease the number of iterative com-
positions. Subsequent computations are performed only for the
distinct iterative compositions. That is, the number of iterative
compositions only decreases, but does not increase, in their PH-
flash algorithm. No scheme was proposed to handle the situation
in which new phases appear in subsequent iterations as tempera-
ture changes in PH flash. This is problematic when the number and
identities of phases change within the temperature domain of in-
terest, as in steam injection simulation.

Fourthly, how to select a reference composition that was
required to set the system of equations is unclear [33,42]. Alsaifi
and Englezos [42] only stated in their paper on PT flash that a
negative phase amount occurred when a reference composition
was improperly selected.

Due to the various issues ranging from fundamental to imple-
mentation problems, no algorithm has been established for
multiphase PH flash integrated with phase-stability analysis. In this
paper, the coupling of phase-stability and flash calculations is
reformulated on the basis of Brantferger's research on phase sta-
bility with PH specification [21,38]. Then, a new algorithm is pre-
sented to robustly solve the formulated multiphase PH flash. Also, a
detailed analysis is given to address the unanswered question
regarding thermodynamic conditions for narrow-boiling behavior.
Case studies demonstrate that the developed algorithm can
robustly perform multiphase PH flash integrated with phase-
stability analysis even for narrow-boiling fluids, which none of
the prior PH-flash algorithms [21,24,32e38] addressed in detail.
2. Formulation and algorithm

The new PH flash integrated with stability analysis is formulated
by combining the conventional PH-flash formulation with the PT
stability criterion that the tangent plane to the Gibbs free energy
surface at a stable equilibrium state cannot lie above the Gibbs free
energy surface at any composition. Then, a robust algorithm is
developed for the formulated PH flash.
2.1. Formulation

The new formulation is a simple integration of the PH-flash
formulation with Brantferger's analysis [21,38]. The correct phase
equilibrium for a given P, Hspec, and zi (i¼ 1, 2,…, NC) is defined by a
set of T and xij (i ¼ 1, 2, …, NC, and j ¼ 1, 2, …, NP) that gives the
global maximum of the total entropy

S t ¼
XNP

j¼1

bjS j; (1)

where P is pressure, Hspec is the specified molar enthalpy, zi is the
overall mole fraction of component i, T is temperature, xij is the
mole fraction of component i in phase j, St is the total molar en-
tropy, bj is the mole fraction of phase j, Sj is the molar entropy of
phase j, NC is the number of components, and NP is the number of
equilibrium phases. The following constraints are to be satisfied:
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zi ¼
XNP

j¼1

bjxij for i ¼ 1;2;/;NC (2)

XNP

j¼1

bj ¼ 1:0 (3)

H t
D � 1:0 ¼ 0; (4)

where bj > 0, H t
D is the dimensionless total molar enthalpy defined

as H t=H spec, and Ht is total molar enthalpy.
Phase stability with PH specification can be analyzed at a given

T, which defines the Gibbs free energy in composition space along
with the specified P [21,38]. That is, the tangent plane to the Gibbs
free energy surface at a stable equilibrium state at the solution T
and specified P cannot lie above the Gibbs free energy surface at any
composition [43,44]. Therefore, the dimensionless tangent plane
distance function

D ¼
XNC

i¼1

xi
�
lnxi4i � lnxiRef4iRef

�
� 0 (5)

for any composition xi (i ¼ 1,2,…NC) at the solution T and specified
P. The fugacity coefficient of component i is denoted as 4i. A
reference equilibrium-phase composition is written as xiRef. As
shown in Michelsen [44], it is sufficient to check the D values at
stationary points; that is,

Dj ¼
XNC

i¼1

xij
�
lnxij4ij � lnxiRef4iRef

�
� 0 (6)

for j ¼ 1, 2, …, NS. NS is the number of stationary points of the
dimensionless tangent plane distance function defined with a
reference equilibrium-phase composition (xiRef, where i ¼ 1, 2, …,
NC). Note that NS¼NP þ NU, where NU � 0 and is the number of
unstable stationary points of the dimensionless tangent plane dis-
tance function. For NP equilibrium phases, Dj¼ 0 (j¼ 1, 2,…, NP). For
NU unstable stationary points, Dj > 0 [j¼ (NP þ 1), (NP þ 2), …, NS].

In the above, the dimensionless tangent distance function that
spans composition space is expressed as D (equation (5)), and a
specific value of D at the jth stationary point is Dj (equation (6)). At
a stationary point, equation (6) can be also written as

Dj ¼ lnxij4ij � lnxiRef4iRef � 0 (7)

for i ¼ 1, 2,…, NC. This is because the gradients of Dj in composition
space are zero at a stationary point. This simplification was used in
Michelsen [44].

The unified formulation for phase-stability and flash calcula-
tions in the current paper is to find a set of T and xij (i ¼ 1, 2,…, NC,
and j ¼ 1, 2,…, NS) such that Dj ¼ 0 subject to equations (2)e(4) for
equilibrium phases j¼ 1, 2,…, NP, and Dj > 0 for unstable stationary
points j¼ (NP þ 1), (NP þ 2) …, NS.
2.2. Algorithm

The solution scheme presented in this section is referred to as the
multiphase isenthalpic flash algorithm integrated with stability
analysis. Its main feature is the unified usage of the tangent plane
distance function, D, for PH flash with adaptive selection of the
reference composition for an arbitrary number of iterative composi-
tions. A step-wise description is presented along with key equations.
Note that the formulationgiven in section2.1 isbasedon theGibbs
free energy at the solution T and specified P. That is, equation (7) is
satisfied upon convergence to the correct equilibrium solution. To
avoid confusion, special attention should be given to the difference
between variables in section 2.1 and iterative variables in this section.

The developed algorithm uses the tangent plane distance
equations

fij ¼ lnxij4ij � lnxir4ir � qj ¼ 0; (8)

to update all iterative compositions xij (i¼ 1, 2,…, NC and j¼ 1, 2,…,
NS) through K values on the basis of direct substitution. Note that
qj ¼ Dj at an equilibrium state upon convergence. NS is the number
of sampling compositions at which phase stability is estimated
during the iteration. These sampling compositions converge to
stationary points; i.e., NS becomes equal to the number of station-
ary points upon convergence. A reference composition is expressed
as xir (i ¼ 1, 2, …, NC). K values are defined as

Kij ¼ xij
.�

eqj xir
�
; (9)

for i ¼ 1, 2, …, NC, j ¼ 1, 2, …, NS, and j s r.
At an equilibrium state upon convergence, equation (8) becomes

equation (7) (i.e., qj ¼ Dj), and the reference composition ( x!r)
corresponds to one of equilibrium phases, which was denoted as
xiRef in equation (5). Furthermore, Dj ¼ 0 for NP equilibrium phases
(i.e., j¼ 1, 2,…, NP) and Dj > 0 for NU unstable stationary points [i.e.,
j¼ (NPþ 1), (NPþ 2)…, NS] upon convergence, where NS¼NPþNU.

During the iteration, a correct equilibrium state is searched for
by updating temperature and NS sampling compositions. The
sampling compositions belong to either set P or set U. In set P, qj¼ 0
and 0 < bj < 1 for j ¼ 1, 2, …, NP. In set U, qj > 0 and bj ¼ 0 for
j¼ (NP þ 1), (NP þ 2)…, NS. Equation (8) is solved together with the
material balance (equations (2) and (3)) and the enthalpy
constraint, gNP

¼ H t
D � 1:0 ¼ 0 (equation (4)), for K values and TD,

where TD ¼ T/TRef, and TRef is some reference value that makes
temperature better scaled [36,37]. The reference composition ( x!r)
is selected from set P adaptively, as described later.

For set P, equation (9) becomes Kij ¼ xij/xir. The conventional RR
equations give the relationship between K values and mole frac-
tions of apparent phases (bj's) as follows:

gj ¼
XNC

i¼1

�
xir � xij

� ¼ XNC

i¼1

�
1� Kij

�
zi=ti ¼ 0 (10)

for sampling point j s r within set P, where ti ¼ 1� P
jsr

ð1� KijÞbj
for i¼ 1, 2,…, NC. Compositions are given as xir ¼ zi/ti and xij¼ Kijxir
for i ¼ 1, 2, …, NC.

For set U, the summation constraint Sixij ¼ 1.0 gives

qj ¼ �ln

"XNC

i¼1

Kijxir

#
(11)

for sampling composition j within set U. Compositions for set U are
given as xij ¼ eqjKijxir for i ¼ 1, 2, …, NC.

The algorithm presented in this section is applicable for an
arbitrary number of sampling compositions, which converge to
stationary points of the tangent plane distance function at an equi-
librium state upon convergence. As will be presented later, sampling
compositions naturally merge for a case in which NS is greater than
the number of stationary points present upon convergence.

NS sampling compositions can be initialized by use of a corre-
lation suitable for the fluid of interest, such as Wilson's correlation,
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Li and Firoozabadi [45], and Zhu and Okuno [37], and use of certain
information from the previous time-step in flow simulation. A
random distribution and a distribution near vertices in composition
space are useful when no reliable information is available for
equilibrium phases of the fluid of interest.

The algorithm requires more sampling compositions than the
number of equilibrium phases, which, in general, is unknown prior
to the calculation. NC sampling compositions may be sufficient in
most petroleum applications, in which a few pseudo components
are used in addition to well-defined light components, such as
methane, ethane, and propane. However, at least (NC þ 1) sampling
compositions are required for one degree of freedom for multi-
component mixtures. In general, the iterative solution with this
algorithm becomes more robust as NS increases, because more in-
formation about the Gibbs free energy is carried by more sampling
compositions. However, use of more sampling compositions lowers
the computational efficiency, as will be shown in the case studies.
With NS less than NC, the algorithm may fail to find the correct
number of equilibrium phases, unless specific information about
equilibrium phases is available prior to the calculation.

The fundamental structure of the current algorithm broadly
follows the direct substitution algorithm developed by Michelsen
[34], but is newly designed for integrated flash-stability calcula-
tions on the basis of the PH-flash algorithm developed by Zhu and
Okuno [37]. Each iteration first solves equations (10) and (11) for
sets P and U, respectively, in sequence for a given set of K values and
overall composition. Then, the traditional direct substitution with
equation (8) updates K values for sets P and U in composition space.
After that, one Newton's iteration step is performed for (NP e 1) b’s
and TD by use of the system of NP equations (equations (4) and
(10)), as in Michelsen [34]. Finally, K values for sets P and U are
updated in temperature space for the subsequent iteration.

This fundamental structure is augmented by various important
steps for robustness. As mentioned in Section 1, for example, it is
crucial to check the feasibility for each RR solution by use of the
method of Okuno et al. [9]. The constraint, aiTb � bi, where
ai ¼ {1 � Kij}, b ¼ {bj}, bi ¼ min{1 e zi, minj{1 e Kijzi}}, is to be
satisfied if there exists a bounded feasible region for each RR so-
lution [9]. Also, the decoupling of TD from b’s is necessary to solve
degenerate systems of equations (equations (4) and (10)) for
narrow-boiling fluids, as presented in Zhu and Okuno [36,37]. A
new analysis of narrow-boiling behavior will be presented in the
next section. Furthermore, the upper and lower temperature limits
(TDU and TDL ) are used not to have unrealistic temperature values
during the iterations. In this research, the upper and lower tem-
perature limits are selected at 288.15 K and 775 K, respectively. The
limits are set to cover a sufficiently wide range of temperatures for
the application of interest. The initial guess for temperature should
be within the limits.

The Peng-Robinson (PR) EOS [46,47] with the van der Waals
mixing rules is used to calculate thermodynamic properties in this
research. Pertinent derivatives can be found in Zhu and Okuno [36].
A stepwise description of the multiphase isenthalpic flash algo-
rithm integrated with stability analysis is given below. The flow
chart of the algorithm presented in this section is given in
Appendix A.

Step 1. Specify Hspec, P, and overall composition z!, along with
model parameters, such as critical temperature TC, critical
pressure PC, acentric factor u, and NC � NC binary interaction
parameters (BIPs). Input an initial guess for dimensionless
temperature, TD(1), where the number in the bracket represents
the iteration-step number k ¼ 1.
Step 2. Set NS sampling compositions x!ðkÞ

j for j ¼ 1, 2, …, NS.
Step 3. Calculate Dj (equation (6)) with z! as the reference
composition for j ¼ 1, 2, …,NS. Select the sampling composition

that has theminimumD value as the reference composition x!ðkÞ
r .

Calculate K values, K
!ðkÞ

j , by use of lnKij ¼ ln4ir � ln4ij for j ¼ 1, 2,
…, NS and j s r, which is derived from equations (8) and (9).
Recalculate Dj with the selected reference composition. Set NU as
the number of sampling compositions that have positive D values.
NP¼NSeNU. If NP ¼ 1, go to step 7. Otherwise, go to step 4.
Step 4. Check to see if the feasible region for the RR equations
(set P) is bounded [9]. If so, go to step 6. Otherwise, go to step 5.
Step 5. Exclude from set P as many sampling compositions as
required until the feasibility is satisfied for the given RR prob-
lem. The exclusion is conducted in the descending order in
terms of D within set P. Then, update NP. If NP ¼ 1, go to step 7.
Otherwise, continue to step 6.
Step 6. Solve the RR equations (equation (10)) for set P to obtain
bðkÞj and x!ðkÞ

j for j ¼ 1, 2, …, NP.

Step 7. Calculate qðkÞj and x!ðkÞ
j for set U, where j¼ (NP þ 1),

(NP þ 2) …, NS, by use of equation (11).
Step 8. If qj(k) > 0 for j¼ (NP þ 1), (NP þ 2) …, NS, go to step 9.
Otherwise, set qj(k)¼ 0, and select the sampling composition that
has the minimum qj value, as the reference composition. Then,
update NP and K values with the new reference composition. Go
to step 11.
Step 9. If 0 < bj

(k) < 1 for j ¼ 1, 2, …, NP, go to step 10. Otherwise,
set bj(k) ¼ 0 and qj

(k) s 0, and select the sampling composition
with 0 < bj < 1 as the reference composition. Then, update NP

and K values with the new reference composition. Go to step 11.

Step 10. Stop, if
��� f
!ðkÞ

j

���
∞
< εf (e.g., εf ¼ 10�10) and jgNP(k)j < εh (e.g.,

εh ¼ 10�10) for j ¼ 1, 2, …, NS (r s j). Otherwise, go to step 11.

Step 11. Check for merging compositions. If
��� x!ðkÞ

j � x!ðkÞ
q

���
∞
< εx

(e.g., εx ¼ 10�3) for j, q ¼ 1, 2, …, NS, and j s q, delete the jth
sampling composition. Add a new sampling composition, and
update the reference composition. Then, go to step 12.
Step 12. Update K values in composition space for sets P and U
by use of lnKij¼ ln4ir� ln4ij for j¼ 1, 2,…, NS and js r. If NP¼ 1,
go to step 7. Otherwise, go to step 13.
Step 13. Construct the NP � NP Jacobian matrix only for set P, and
calculate its condition number. If the condition number is greater
than x (e.g., 106), go to step 16. Otherwise, perform one Newton's
iteration step to obtain bj

(k þ 1) and TD(k þ 1) for j ¼ 1, 2, …, NP.
Step 14. Check to see if TDL < TD(k þ 1) < TDU. If so, continue to step
15. Otherwise, update TD(k þ 1) using the Regula Falsi method
[37].
Step 15. Update K values in temperature space for sets P and U:
lnKij

(k þ 1) ¼ lnKij
(k) þ [TD(k)(TD(k þ 1) ‒ TD(k))/TD(k þ 1)](vlnKij/

vTD)(k). Go to step 4 after increasing the iteration-step number
by one: k ¼ k þ 1.
Step 16-1. Set tL to the highest temperature between TDL and
TD(k) that gives a negative gNP. Set tU to the lowest temperature
between TDU and TD(k) that gives a positive gNP.
Step 16-2. TD(k þ 1) ¼ 0.5(tL þ tU).
Step 16-3. Perform PT flash at TD(k þ 1) to calculate bj(k þ 1), qj(k þ 1)

and x!ðkþ1Þ
j such that

��� f
!ðkþ1Þ

j

���
∞
< εf for j¼ 1, 2,…, NS, and rs j.

Step 16-4. Calculate the condition number of the Jacobian ma-
trix. If it is greater than x, continue to step 16-5. Otherwise, go to
step 4.
Step 16-5. Calculate gNP(k þ 1). If jgNP(k þ 1)j is less than εh, stop.
Otherwise, tL ¼ TD(k þ 1) for gNP(k þ 1) < 0, and tU ¼ TD(k þ 1)



Table 1
Properties for the ternary mixture (case 1). The critical properties of water were taken from Ref. [51].

Component Mole fraction TC, K PC, bar u CP10 , J/(mol$K) CP20 , J/(mol$K2) CP30 , J/(mol$K3) CP40 , J/(mol$K4)

Water 0.022 672.48 277.15 0.2699 32.200 1.907 � 10�3 1.055 � 10�5 �3.596 � 10�9

C4 0.928 421.56 36.01 0.2127 9.490 3.313 � 10�1 �1.108 � 10�4 �2.822 � 10�9

CB 0.050 847.17 10.64 1.0406 �31.900 3.612 �2.044 � 10�3 4.486 � 10�7

Binary interaction parameters:

Water C4 CB

Water 0.0000 0.5602 0.1100
C4 0.5602 0.0000 0.0750
CB 0.1100 0.0750 0.0000
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for gNP(k þ 1) > 0. Then, go to step 16-2 after increasing the
iteration-step number by one; k ¼ k þ 1.

In Step 3, a reference composition is initialized to define equa-
tion (8). First, function D (equation (5)) with the overall composi-
tion as the reference is used to calculate Dj (equation (6)) at NS
sampling compositions (j ¼ 1,2, …,NS). Then, the initial reference
composition is defined at which D is the minimum among the NS
sampling compositions. This procedure is also used when a new
reference composition is to be selected during the iterations. Note
that D values are used only for the initialization of sampling
compositions.

In Step 11, the sampling composition to be added is taken from
the previous iteration in this research. The composition that has a
greater distance from that of the merged sampling composition is
added. The purpose of adding a sampling composition in step 11 is
to keep the original Ns, which should be always equal to or greater
than the number of stationary points on the tangent plane distance
function. It has been observed that this step is crucial for PH flash
for water/solvent/bitumen mixtures, in which the number and
identities of phases can change frequently with temperature for a
given overall composition and pressure.

The algorithm presented in this paper is substantially different
from that of Gupta et al. [33]. An important difference comes from
the difference in formulation; that is, they introduced an additional
set of equations, bjqj/(bj þ qj) ¼ 0, which were called “stability
equations” in their papers. These additional equations were solved
simultaneously with equations (4) and (10) in their algorithm.
However, the unified formulation presented earlier in this section
clearly shows that the complete formulation does not require
Gupta et al.’s stability equations. Consequently, the Jacobian matrix
Fig. 1. Total molar enthalpy at 35 bars for the ternary mixture given in Table 1. At
35 bars, CB-rich phase (L1) þ C4-rich phase (L2) þ aqueous phase (W) exists from 375 K
to 400.89 K, L1 þ L2 from 400.89 K to 416.24 K, L1 þ L2 þ vapor phase (V) from 416.24 K
to 418.55 K, and L1 þ V from 418.55 K to 475 K. Ht is highly non-linear with respect to
temperature near phase transition from L1 þ L2 to L1 þ L2 þ V.
in step 13 is always smaller than that of Gupta et al. which is of
(2NP � 1) � (2NP � 1).

A second difference is in the initialization step. Gupta et al. [33]
proposed their own initialization scheme for estimation of K values.
Their initialization scheme excludes the sampling compositions
that have positive D values from equation (5) with the overall
composition as the reference composition. This often leads to non-
convergence due to an unbounded feasible region for the RR solu-
tion, as described in Okuno et al. [9]. A third difference is that the
algorithm of Gupta et al. [33] uses Newton's iteration step even for a
narrow-boiling fluid, for which the system of equations is nearly
degenerate [36,37]. This leads to non-convergence as studied in
detail by Zhu and Okuno [36,37]. The algorithm in this research
adaptively switches between Newton's iteration and bisection
depending on the condition number of the Jacobianmatrix. A fourth
difference is in the selection of a reference composition x!r.
Although it is not clear in Gupta et al. [33], improper selection of a
reference phasewas found by negative phase amounts in Alsaifi and
Englezos [42]. The selection of x!r given in steps 3, 8, and 9 is based
on the fundamental principle that the lowest Gibbs free energy
should be searched for in composition space, as presented earlier in
this section. A fifth difference lies in the stopping criteria. In this
research, the fugacity and enthalpy equations are properly satisfied
upon convergence. This is in contrast to the algorithm of Gupta et al.
[33], which tests only the difference between two consecutive
iteration steps in terms of temperature and phase compositions.
3. Analysis of narrow-boiling behavior

In this section, the thermodynamic conditions for narrow-
Fig. 2. Dimensionless condition number of Jacobianmatrix and theHessianmatrixof the
RR convex function (equation (13)) in L1þ L2þ V region at 35 bars for the ternarymixture
given in Table 1. The scaling of temperature and enthalpy is conducted with Tref of 300 K
and Hspec of 5000 J/mol. The dimensionless Jacobian condition number exceeds 106 be-
tween 416.24 K and 417.55 K. The Hessian matrix is reasonably well-conditioned; hence,
the RR portion of the system of equations is not problematic in the three-phase region.



Table 2a
Six sampling compositions at the 1st iteration (case 1).

Composition 1 Composition 2 Composition 3 Composition 4 Composition 5 Composition 6

xij 5.011728395 � 10�2 5.000000000 � 10�4 5.000000000 � 10�4 2.024691358 � 10�1 2.026337137 � 10�1 9.990000000 � 10�1

8.484938271 � 10�1 9.990000000 � 10�1 5.000000000 � 10�4 6.906419752 � 10�1 4.016934042 � 10�1 5.000000000 � 10�4

1.013883334 � 10�1 5.000000000 � 10�4 9.990000000 � 10�1 1.068888890 � 10�1 3.956728821 � 10�1 5.000000000 � 10�4

Table 2b
Six sampling compositions at the 2nd iteration before the merging of compositions 2 and 4 (case 1).

Composition 1 Composition 2 Composition 3 Composition 4 Composition 5 Composition 6

xij 9.999996463 � 10�1 1.048995656 � 10�2 1.033333973 � 10�2 1.051640199 � 10�2 9.013291891 � 10�3 8.932510699 � 10�3

3.536746148 � 10�7 9.767356013 � 10�1 9.753538516 � 10�1 9.767748394 � 10�1 9.444418053 � 10�1 9.413768141 � 10�1

2.538515500 � 10�11 1.277444214 � 10�2 1.431284427 � 10�2 1.270875861 � 10�2 4.654490280 � 10�2 4.969067520 � 10�2
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boiling behavior are investigated on the basis of the PR EOS. The
term “narrow-boiling” has been used in the literature to indicate
the enthalpy behavior that is substantially sensitive to temperature.
Narrow-boiling behavior occurs as a result of the significant inter-
play between the energy balance and phase behavior equations, as
explained below.

Zhu and Okuno [36,37] concluded that narrow-boiling behavior
occurswhen at least one of the phase compositions (xij for i¼ 1, 2,…,
NC and j ¼ 1, 2, …, NP) drastically changes with a small change in
temperature so that phase mole fractions (bj for j ¼ 1, 2, …, NP)
significantly change. That is, it is relateddirectly to the sensitivity of K
values to temperature. Therefore, narrow-boiling behavior can be
effectively analyzed on thebasis of the equations (4) and (10) that are
coupled through the temperature dependency of K values as pre-
sented inZhuandOkuno [48].Note that theanalysispresented in this
section only includes equilibrium phases; i.e., x!j for j ¼ 1, 2,…, NP.

Appendix B gives the analytical expressions of each element in
the NP � NP Jacobian matrix for a NC-component NP-phase system.
The Jacobian matrix is formed by dimensionless equations (4) and
(10) with respect to independent bj and TD. Themajor block of (NP ‒

1) � (NP ‒ 1) in the Jacobian matrix comes from the RR equations
with respect to independent b’s. This part corresponds to the
Hessianmatrix of the convex function that was used by Okuno et al.
[9] to solve RR as a convex minimization problem in multiphase
compositional reservoir simulation. Appendix B shows that if the
total enthalpy becomes sensitive to temperature (i.e., narrow-
boiling behavior, or vgNP/vTD becomes large), the Jacobian tends
to be ill-conditioned regardless of the curvature of the RR convex
function. This is consistent with the cases shown in Zhu and Okuno
[36], and also can be understood from the following equation;

H t
D ¼

XNP

j¼1

bjH Dj; (12)

where HDj is the dimensionless molar phase enthalpy. Equation
(12) shows that the total enthalpy becomes sensitive to tempera-
ture if a small temperature change causes K values to drastically
change so that the RR solution gives substantially different b’s be-
tween the two temperatures.

More specific conditions for narrow-boiling behavior can be
derived on the basis of the analysis of a convex function whose
Table 2c
Six sampling compositions at the 63rd iteration (case 1).

Composition 1 Composition 2 Composition 3

xij 9.963029187 � 10�1 3.987093567 � 10�2 4.042558722 � 10�2

1.753511927 � 10�11 9.599949394 � 10�1 9.517664807 � 10�1

3.697081246 � 10�3 1.341248777 � 10�4 7.807932011 � 10�3
gradient vectors consist of the RR equations as follows. Okuno et al.
[9] presented a non-monotonic convex function whose gradient
vectors consist of the RR equations as

FðbÞ ¼
XNC

i¼1

ð � zilnjtijÞ; (13)

where b is the vector of independent mole fractions [i.e., bj for j¼ 1,
2, …, (NP ‒ 1)]. A derivation of the function can be found in Okuno
et al. [9]. The convex function in Okuno et al. [9] is similar to the
ones presented in Michelsen [49] and Leibovici and Nichita [50].
Multiphase RR equations can be correctly solved by the following
formulation:

Minimize FðbÞ ¼
XNC

i¼1

ð � zilnjtijÞ subject to aTi b � bi; (14)

where ai ¼ {1 e Kij}, and bi ¼min{1 e zi, minj{1 e Kijzi}} for i ¼ 1, 2,
…, NC, and j ¼ 1, 2, …, (NP e 1) [9]. The feasible region was derived
on the basis of the non-negativity of phase component mole frac-
tions, 0 � xij � 1 for i ¼ 1, 2, …, NC, and j ¼ 1, 2, …, NP [9].

The Hessian matrix of (NP ‒ 1) � (NP ‒ 1) for the minimization is

V2F ¼
n
Hkj

o
¼

n
YTDY

o
; (15)

where Hkj ¼
PNC

i¼1½ð1� KijÞð1� KikÞzi�=t2i , D ¼ diagðz1;…; zNC
Þ

2ℝNC�NC , and Y ¼ fYijg ¼ fð1� KijÞ=tig2ℝNC�ðNP�1Þ: The D matrix
is positive definite because zi (i ¼ 1, 2, …, NC) are all positive (i.e.,
positive composition space). The Hessian matrix is only positive
semi-definite if Y is not of full rank; i.e., at critical points, including
critical endpoints where two of three equilibrium phases merge in
the presence of the other non-critical phase. In such cases, there
exists a direction along which F is constant as proved by Okuno
et al. [9]. No solution exists in the minimization for such cases.

If the D matrix is not positive definite (in negative composition
space), the positive definiteness of the Hessian matrix is not guar-
anteed even if Y is of full rank. Negative zi values do not occur in
practical simulations, but were considered here to indicate the
limiting behavior of the Hessian matrix in composition space.

In summary, the degree of positive definiteness of the Hessian
Composition 4 Composition 5 Composition 6

2.821421577 � 10�2 2.844511013 � 10�2 1.762505600 � 10�2

7.764909338 � 10�1 8.109556208 � 10�1 9.629795682 � 10�1

1.952948503 � 10�1 1.605992690 � 10�1 1.939537572 � 10�2



Fig. 3. Convergence behavior of the current algorithm for the ternary mixture given in
Table 1 at 35 bars and 5000 J/mol: (a) T, (b) residual of equation 4, and (c) NP. The initial
T is set to 375 K, where L1 þ L2 þW coexist. In this calculation, NS is set to six, of which
three sampling points are placed near compositional vertices. The other three sam-
pling compositions are randomly distributed (see Table 2a). The solution temperature
is 416.89 K, where narrow-boiling behavior occurs (see Fig. 1).

D. Zhu, R. Okuno / Fluid Phase Equilibria 423 (2016) 203e219 209
matrix tends to become lower as the overall composition becomes
closer to an edge of positive composition space (e.g., at least one
component is of nearly-zero concentration) and/or the solution
conditions (temperature, pressure, overall composition) become
closer to a critical point. The solution of the minimization for such
cases tends to be sensitive to the K values used, because of small
gradients of the convex function. This leads to narrow-boiling
behavior. This can be easily confirmed by plotting the RR convex
function for two phases near a critical point or near the vertex of a
component with a K value close to unity in positive composition
space, for example.

Appendix B shows that the system of equations are degenerate if
the Hessian matrix is semi-positive definite. Therefore, the following
are conditions that can cause narrow-boiling behavior: (i) the overall
composition is near an edge of positive composition space, and (ii)
the solution conditions (temperature, pressure, and overall compo-
sition) are near a critical point, including a critical endpoint.

These conditions are qualitative unless a quantitative definition
is given for narrow-boiling behavior. Therefore, the degeneracy
level of the system of equations is quantified on the basis of the
condition number of the Jacobian matrix in this research, as in Zhu
and Okuno [36] (see Appendix B for the Jacobian matrix). The
condition number of 106 is used to detect narrow-boiling behavior
in computations with the double-precision floating-point numbers
(see Step 13 in the previous section).

The two conditions mentioned above are contained by the gen-
eral condition for narrow-boiling behavior that K values are sensitive
to temperature. Although the two specific conditions are qualitative,
the analysis of the RR convex function gives the clear limiting con-
ditions towards which the tendency of narrow-boiling behavior in-
creases. For instance, the RR problem is uniquely defined only for
NC � NP (i.e., more than one degree of freedom). For one degree of
freedom (e.g., three phases for a binary system), K values discon-
tinuously changes at the temperature of interest, which causes the
limiting narrow-boiling behavior as an exact discontinuity of
enthalpy with respect to temperature. This is a special case of the
first condition mentioned previously in this section.

4. Case studies

In this section, the algorithm developed in this research is
applied to three different mixtures, which exhibit narrow-boiling
behavior. One case has only one degree of freedom, which is the
limiting case of narrow-boiling behavior. Different reasons for the
narrow-boiling behavior in the cases are explained based on the
analysis given in the previous section. The mixtures used in this
section present three phases at most. Although not shown in this
paper, the algorithm has been successfully tested also for the four-
phase case given in Zhu and Okuno [37]. The only possible com-
parison is made with the algorithm of Gupta et al. [33], for which
various issues were discussed previously in this paper. They are
highlighted in case 1 given below.

Sampling compositions are initialized by use of a random dis-
tribution and a distribution near vertices in composition space,
unless otherwise stated. That is, when NS¼NC, the NS compositions
are placed near the NC vertices in composition space.When NS>NC,
NC sampling compositions are placed near the compositional
vertices, and the other (NS e NC) sampling compositions are
distributed by use of a random-number generator. A sampling
composition selected near a compositional vertex consists of 99.9%
that component and 0.1% the equimolar mixture of the other
components in this section.

4.1. Case 1

Case 1 uses three components consisting of 2.2% water (w),
92.8% n-butane (C4), and 5.0% bitumen (CB). The components'
properties are given in Table 1. The critical properties for water
were taken from Ref. [51]. They are not physical values, but were
optimized in terms of vapor pressure and density using the PR EOS.
This mixture is used because it gives complicated phase behavior



Fig. 4. Ternary diagrams at 35 bars for the ternary mixture given in Table 1 at different iteration steps. In these ternary diagrams, solid dots represent the sampling compositions in
set P, which are considered for material balance. Hollow dots represent the sampling compositions in set U, which are excluded frommaterial balance. (a) Ternary diagram at the 1st
iteration where L1, L2, and W coexist (T ¼ 375 K). (b) Ternary diagram point at the 2nd iteration where L1 and V coexist (T ¼ 484.86 K) after merging, adding and re-selecting
reference. (c) Ternary diagram at the 23rd iteration where L1 and L2 coexist (T ¼ 402.74 K). (d) Ternary diagram at the 28th iteration where L1, L2, and V coexist (T ¼ 418.35 K).
(e) Ternary diagram at the 63rd iteration where L1, L2, and V coexist (T ¼ 416.89 K).
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and serves as a challenging case for the algorithm developed in this
research.Whether this phase behavior occurs in reality is uncertain
and beyond the scope of this research.

Fig. 1 shows Ht from 375 K to 475 K at 35 bars. At 35 bars, CB-rich
phase (L1) þ C4-rich phase (L2) þ aqueous phase (W) exists
from 375 K to 400.89 K, L1 þ L2 from 400.89 K to 416.24 K,
L1þ L2þ vapor phase (V) from 416.24 K to 418.55 K, and L1þ V from
418.55 K to 475 K. Ht is highly non-linear with respect to temper-
ature near the phase transition between L1 þ L2 and L1 þ L2 þ V.

Fig. 2 shows the Jacobian condition number in the L1 þ L2 þ V
region at 35 bars. The scaling of temperature and enthalpy is con-
ducted with Tref of 300 K and Hspec of 5000 J/mol. The Jacobian
condition number exceeds 106 between 416.24 K and 417.55 K,
indicating narrow-boiling behavior. Fig. 2 also show that the Hes-
sian matrix of the RR convex function (equation (13)) is reasonably
well-conditioned; hence, the RR portion of the system of equations
is not problematic in the three-phase region. However, Fig. 1 clearly
shows that the total enthalpy is sensitive to temperature near the
phase boundary between L1 þ L2 and L1 þ L2 þ V. In this case,
therefore, the narrow-boiling behavior occurs because K values are
sensitive to temperature.

A PH flash calculation at 35 bars and 5000 J/mol is considered
for this ternary fluid. The initial T is set to 375 K, at which
L1 þ L2 þ W coexist. In this calculation, NS is set to six, of which
three sampling compositions are placed near the compositional
vertices. The other three sampling compositions are randomly
distributed (see Table 2a). The solution temperature is 416.89 K in
the narrow-boiling region (see Fig. 1).

Fig. 3 shows the iterative solution in terms of T, residual of
equation (4) (gNP), and NP. At the 30th iteration when T is 417.10 K,
narrow-boiling behavior is detected by a large condition number of
the Jacobian matrix. From this iteration on, TD is decoupled from b’s
until it linearly converges to the correct solution at the 63rd iter-
ation. The iterative temperature fluctuates between different phase



Fig. 5. Number of iterations required for convergence increases with the number of
sampling points used. This is the PH flash for the ternary mixture given in Table 1 at
35 bars and 5000 J/mol. All calculations start at the same initial T (375 K). The three
sampling points that are always used are near the compositional vertices. The other
sampling compositions are randomly distributed for NS > 3. The proposed algorithm
successfully converges to the correct solution as long as NS is greater than two.

Fig. 6. Dimensionless Jacobian condition number with respect to the number of iter-
ations required for convergence for the ternary mixture given in Table 1. Among the
350 discrete PH specifications, 240 PH conditions lie in the narrow-boiling region. All
calculations start at the same initial T, 375 K, using three sampling compositions near
the compositional vertices. Results show that number of iterations required increases
with the condition number of Jacobian matrix.

Fig. 7. T-x cross section for 99% water and 1% BSB oil at 10 bars on the basis of the PR
EOS. The components' properties are given in Table 3. Three equilibrium phases, L, V,
and W, are calculated to coexist at 329.31 K (T3P). A discontinuity of two-phase K
values occurs at T3P. Also, K values in the V þ W region rapidly change with
temperature.

Fig. 8. Total molar enthalpy for 99% water and 1% BSB oil at 10 bars. The components'
properties are given in Table 3. Ht is substantially nonlinear with respect to temper-
ature. It is discontinuous at T3P.

D. Zhu, R. Okuno / Fluid Phase Equilibria 423 (2016) 203e219 211
regions, indicating the complex solution (Fig. 3a). As shown in
Fig. 3c, NP also fluctuates until the correct number of phases is
detected at the 33rd iteration. Two sampling compositions merge
at the 2nd iteration in this case. However, NS remains six during the
iteration, because a new sampling point is added once the merging
occurs as described in the algorithm section.

Fig. 4 shows the six sampling compositions at different iteration
steps. In these ternary diagrams, solid dots represent the sampling
compositions in set P, which are considered for material balance.
Hollow dots represent the sampling compositions in set U, which
are excluded frommaterial balance. The 1st iteration starts with all
sampling compositions included in material balance in this case.
Therefore, the initial b's are calculated through the conventional RR
Table 3
Properties of the binary mixture consisting of 99% water (w) and 1% Bob Slaughter Block

Component Mole fraction MW g/mol TC K PC bar u

Water 0.99 18.015 647.300 220.890 0.344
BSB oil 0.01 118.834 335.089 11.224 0.392

Binary interaction parameter for water with the BSB oil is 0.525.
equations (equation (10)), and the q's are zero.
At the 2nd iteration, two sampling compositions merge.

Table 2b shows the compositions of sampling points at the 2nd
iteration before the merging. Sampling compositions 2 and 4 are
merged. Sampling composition 4 is deleted. Then, a new sampling
composition is added in order to maintain NS of six. The new
sampling composition is selected from the previous iteration step,
which is the one that has a greater difference from the deleted
sampling composition. Then, sampling composition 4 is replaced
by (0.2025, 0.6906, 0.1069). After that, only sampling compositions
4 and 6 are included in material balance, as shown by the two solid
dots in Fig. 4b. Fig. 4c and d shows the sampling compositions at the
23rd and 28th iterations, in which the iterative temperatures lie in
different phase regions as shown in Fig. 3a. Fig. 4e shows the
sampling compositions at the 63rd iteration, in which three equi-
librium compositions are obtained. The final set of sampling
(BSB) oil (case 2).

CP1
0 J/(mol$K) CP20 J/(mol$K2) CP30 J/(mol$K3) CP40 J/(mol$K4)

32.20 1.907 � 10�3 1.055 � 10�5 �3.596 � 10�9

�13.28 1.607 �8.971 � 10�4 6.581 � 10�11



Fig. 9. Dimensionless condition number of Jacobian matrix and the Hessian matrix of
the RR convex function (equation (13)) within the V þ W region at 10 bars for 99%
water and 1% BSB oil at 10 bars. The components' properties are given in Table 3. Note
that the Hessian matrix for two-phase RR is of 1 � 1 (i.e., a scalar). Tref of 300 K and
Hspec of �5000 J/mol are used to calculate TD and HD

t . Narrow-boiling behavior occurs
for temperature above 447.73 K using the criterion that the condition number of the
Jacobian matrix with dimensionless variables is greater than 106. It is evident from the
figure that the convexity of the RR convex function is substantially reduced in the
narrow-boiling region, which verifies the analysis given in the previous section.

Fig. 10. Convergence behavior of the multiphase isenthalpic flash algorithm integrated
with stability analysis at 10 bars and �42,925.99 J/mol for 99% water and 1% BSB oil: (a)
T, (b) residual of equation 4, and (c) NP. The components' properties are given in
Table 3. The initial temperature is set to 370 K, which is in the V þ W region. In this
calculation, NS is set to three. Two of the three sampling compositions are near
vertices. The third is placed at the middle of the composition space. The solution
temperature is 329.31 K, at which Ht is discontinuous with respect to temperature (see
Fig. 8). The convergence is achieved at the 10th iteration.
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compositions is presented in Table 2c. The three equilibrium phases
are compositions 2, 4, and 6. The q values at the other three com-
positions are positive, indicating that they are unstable.

Different initialization schemes proposed in the literature are
tested for case 1. Use of the scheme proposed by Gupta et al. [33]
results in an unbounded feasible region for the RR solution,
which prevents the algorithm from proceeding at the 1st iteration.
With the K-value correlation developed by Zhu and Okuno [37], the
algorithm successfully converges in 64 iterations.

The algorithm of Gupta et al. [33] is also tested for this case. It
can be initialized if the K-value correlation of Zhu and Okuno [37] is
used. However, it stops from proceeding at the 9th iteration due to
an unbounded feasible region for the RR solution. Even if the RR
issue is resolved by a proper modification, it still stops from pro-
ceeding at the 32nd iteration due to narrow-boiling behavior. This
is because narrow-boiling behavior causes the system of equations
to be nearly degenerate; thus, the decoupling of the variables
should be performed as in this research. Their algorithm may also
fail to converge to the correct solution because the number of
phases can only decrease during the iteration with their algorithm.

One of the advantages of the new algorithm is that NS gives the
flexibility in terms of robustness and efficiency. It becomes more
robust with increasing NS at the expense of computational effi-
ciency. As NS increases, the algorithm become more robust because
the possibility of finding all stationary points of the tangent-plane
distance function increases. In case 1, the number of stationary
points detected upon convergence is 3 with NS of 3, 4 with NS of 4
and 5, and 5 with NS of 6 and higher. Fig. 5 shows the number of
iterations required when starting with different NS. All calculations
start at the same initial T at 375 K. The three sampling points that
are always used are near the compositional vertices. The other
sampling compositions are randomly distributed for NS > 3. The
proposed algorithm successfully converges to the correct solution
as long as NS is greater than two. The number of iterations required
tends to increase with increasing NS because the algorithm with
more sampling compositions may take more iterations when
merging and adding some of the sampling compositions. This is a
common observation for all the cases tested in this research.

The required number of iterations is 41 with the three sampling
compositions placed near the compositional vertices. Interestingly,
this is much lower than the number of iterations, 64, requiredwhen
the K-value correlation by Zhu and Okuno [37] is used, although the
number of sampling points is the same for the two cases. This in-
dicates that a physically-derived correlation for K values does not
necessarily result in fewer iterations than a random distribution



Fig. 11. T-x diagrams at 10 bars for 99% water and 1% BSB oil at different iteration steps during the solution: (a) the 1st and 2nd iterations, (b) the 3rd and 4th iterations, (c) the 5th
and 6th iterations, (d) the 7th and 8th iterations, and (e) the 9th and 10th iterations. The components' properties are given in Table 3. In these figures, solid symbols represent the
sampling compositions in set P, which are included in material balance. Hollow symbols represent the sampling compositions in set U. At the 1st iteration, all three sampling points
are excluded from material balance due to the positive q’s. From the 2nd iteration to 9th iteration, the iterative temperatures switch between the L þ W and V þ W regions.
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and a distribution near vertices in composition space with the al-
gorithm developed.

The algorithm is further tested for 350 discrete PH specifications
for the mixture given in Table 1. Fig. 6 shows the Jacobian condition
number with respect to the number of iterations required. Among
them, 240 PH conditions lie in a narrow-boiling region. All calcu-
lations start from the same initial T, 375 K, and three sampling
compositions near the compositional vertices. Results show that
the number of iterations required increases with the condition
number of Jacobian matrix. Similar trends are observed for Cases 2
and 3, although not shown in this paper.
Table 4
Compositions of the three sampling points at the 10th iteration used for case 2.

Composition 1 Composition 2 Composition 3

xij 3.937372916 � 10�3 8.801870733 � 10�3 9.999999999 � 10�1

9.960626270 � 10�1 9.911981292 � 10�1 1.380325011 � 10�11
4.2. Case 2

Case 2 uses a binary mixture consisting of 99% water (w) and 1%
Bob Slaughter Block (BSB) oil. The components' properties are given
in Table 3. The four components used for the BSB oil by Okuno et al.
[52] were grouped into one pseudo component bymolar averaging.
Note that the concentration of water is substantially higher than
that of the pseudo component. Hence, this case is useful to show
narrow-boiling behavior that occurs owing to the first condition
mentioned in the preceding section, including a temperature point
with one degree of freedom.

Fig. 7 presents the T-x cross section for this binary at 10 bars on
the basis of the PR EOS. Three equilibrium phases, L, V, and W, are
calculated to coexist at 329.31 K (T3P). A discontinuity of two-phase
K values occurs at T3P. Also, K values in the V þ W region rapidly
change with temperature. This K-value behavior results in narrow-
boiling behavior as shown in Fig. 8, which shows Ht from 300 K to



Table 5
Properties of the quaternary mixture (case 3).

Component Mole fraction MW g/mol TC K PC bar u CP1
0 J/(mol$K) CP20 J/(mol$K2) CP30 J/(mol$K3) CP40 J/(mol$K4)

Water 0.75 18.015 647.3 220.89 0.344 32.20 1.907 � 10�3 1.055 � 10�5 �3.596 � 10�9

C1 0.08 16.043 190.6 46.00 0.008 19.30 5.212 � 10�2 1.197 � 10�5 �1.132 � 10�8

C7 0.15 100.205 540.2 27.36 0.351 �5.15 6.761 � 10�1 �3.651 � 10�4 7.657 � 10�8

CGB 0.02 594.600 1090.9 7.86 1.361 �34.60 3.801 �2.152 � 10�3 0.000

Binary interaction parameters:

Water C1 C7 CGB

Water 0.0000 0.7560 0.5610 0.1000
C1 0.7560 0.0000 0.0352 0.0000
C7 0.5610 0.0352 0.0000 0.0000
CGB 0.1000 0.0000 0.0000 0.0000

Fig. 12. P-T diagram for the quaternary mixture given in Table 5. The critical endpoint
of type L ¼ V þ W is calculated at 605.73 K and 218.12 bars on the basis of the PR EOS.
At 210 bars (near the critical endpoint), three phases (L þV þW) exist from 581.81 K to
608.52 K.
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475 K at 10 bars. Ht is substantially nonlinear with respect to
temperature. It is discontinuous at T3P.

Fig. 9 presents the condition number of the Jacobian matrix and
the Hessian of the RR convex function (equation (13)) within the
VþWregion at 10 bars. Note that the Hessianmatrix for two-phase
RR is of 1� 1 (i.e., a scalar). Tref of 300 K andHspec of�5000 J/mol are
used to calculate TD and HD

t . Narrow-boiling behavior occurs for
temperature above 447.73 K using the criterion that the condition
number of the Jacobian matrix with dimensionless variables is
greater than106. It is evident fromthefigure that theconvexityof the
Fig. 13. Total molar enthalpy at 210 bars for the quaternary mixture given in Table 5. Ht

at 210 bars is sensitive to temperature near the phase boundary between L þ V þ W
and L þ V, where three-phase PH flash is challenging.
RR convex function is substantially reduced in the narrow-boiling
region, which verifies the analysis given in the previous section.

A PH flash calculation at 10 bars and �42,925.99 J/mol is
considered for this binary mixture. The initial temperature is set to
370 K, which is in the V þ W region. In this calculation, NS is set to
three. Two of the three sampling compositions are near vertices.
The third is placed at the middle of the composition space, to be
uniform in distributing three sampling compositions. The solution
temperature is 329.31 K, at which Ht is discontinuous with respect
to temperature (see Fig. 8). Fig. 10 shows the convergence behavior
of the algorithm in terms of T, residual of equation (4) (gNP), and NP.
The algorithm only uses Newton's iteration steps without decou-
pling the system of equations. This is because narrow-boiling
behavior does not occur in the vicinity of the solution tempera-
ture, as can be seen in Fig. 8. The convergence is achieved at the
10th iteration. Unlike prior algorithms (e.g., Agarwal et al. [32],
Michelsen [34], and Zhu and Okuno [37]), the new algorithm does
not have to detect any temperature oscillation, and directly solve
for one degree of freedom.

Fig. 11 shows the three sampling compositions at different
iteration steps during the solution. In these figures, solid symbols
represent the sampling compositions in set P, which are included in
material balance. Hollow symbols represent the sampling compo-
sitions in set U. At the 1st iteration, all three sampling points are
excluded from material balance due to the positive q’s. From the
2nd iteration to 9th iteration, the iterative temperatures switch
Fig. 14. Condition numbers of the Jacobian matrix and the RR Hessian matrix within
the three-phase region at 210 bars for the quaternary mixture given in Table 5. Tem-
perature and enthalpy are made dimensionless with Tref of 300 K and Hspec of 18,000 J/
mol. Narrow-boiling behavior occurs for temperatures above 598.32 K based on the
criterion that the condition number of the Jacobian with dimensionless variables is
greater than 106. The Jacobian matrix is more ill-conditioned as the convexity level of
the RR convex function becomes lower.



Fig. 15. Convergence behavior of the current algorithm for the quaternary mixture
given in Table 5 at 210 bars and 18,000 J/mol: (a) T, (b) residual of equation 4, and (c)
NP. The initial temperature is set to 550 K. Four initial sampling points are placed near
the compositional vertices. The solution temperature is 607.17 K, which is in the region
of narrow-boiling behavior (see Fig. 13). TD is decoupled from b’s from the 9th iteration
until the convergence is achieved at the 39th iteration.
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between the L þ W and V þ W regions. The final set of sampling
compositions for three equilibrium phases is shown in Table 4.

4.3. Case 3

Case 3 uses a quaternarymixture consisting of 75%water (w), 8%
C1, 15% n-C7 (C7), and 2% Athabasca (GCOS) bitumen (CGB). Johnson
[53] developed a four-pseudo-component model for this bitumen.
Mehrotra and Svrcek [54] presented a single pseudo component for
the bitumen based on the four-pseudo-component model of
Johnson [53]. Properties used for this mixture are given in Table 5.
The composition is located well inside multicomponent composi-
tion space. Case 3 shows narrow-boiling behavior that occurs near a
critical endpoint.

Fig. 12 presents the P-T diagram calculated for the mixture by
using the PR EOS. A critical endpoint of type L¼VþW is calculated
at 605.73 K and 218.12 bars. At 210 bars (near the critical endpoint),
three phases (L þ V þ W) exist from 581.81 K to 608.52 K. Fig. 13
shows that Ht at 210 bars is sensitive to temperature near the
phase boundary between L þ V þ Wand L þ V, where three-phase
PH flash is challenging. Fig. 14 presents the condition numbers of
the Jacobian matrix and the RR Hessian matrix within the three-
phase region at 210 bars. Temperature and enthalpy are made
dimensionless with Tref of 300 K and Hspec of 18,000 J/mol. Narrow-
boiling behavior occurs for temperatures above 598.32 K based on
the criterion that the condition number of the Jacobian with
dimensionless variables is greater than 106. The Jacobian matrix is
more ill-conditioned as the convexity level of the RR convex
function becomes lower, which is in line with the analysis given in
the previous section.

A PH flash calculation at 210 bars and 18,000 J/mol is considered
for this quaternary mixture. The initial temperature is set to 550 K.
Four initial sampling points are placed near the compositional
vertices. The solution temperature is 607.17 K, which is in the re-
gion of narrow-boiling behavior (see Fig. 13). TD is decoupled from
b’s from the 9th iteration until the convergence is achieved at the
39th iteration. Fig. 15 shows the iterative solution in terms of T,
residual of equation (4) (gNP), and NP. Sampling points does not
merge in this case. NP and, therefore, NU change quite often in the
early stage of the iterative solution. Fig. 15b and c shows that the
convergence becomes more rapid after NP becomes stable at the
correct number of phases, which is three in this case. The final set of
sampling compositions is given in Table 6. The three equilibrium
phases are compositions 2, 3, and 4. The other composition has a
positive q value of 0.1689; i.e., the tangent plane distance at that
composition.

5. Conclusions

This paper presented a new algorithm for multiphase PH flash
integrated with stability analysis. The correct set of equations is
solved for stationary points on the tangent-plane-distance function
that is defined at an adaptively selected reference composition. This
paper also presented an analysis of narrow-boiling behavior on the
basis of the multiphase PH-flash equations, where energy and
phase behavior equations are coupled through the temperature
dependency of K values. Case studies were presented to demon-
strate the robustness of the new algorithm and the narrow-boiling
conditions derived in this research. Conclusions are as follows:

1. The new algorithm can robustly solve PH flash for narrow-
boiling fluids. It does not require a special treatment for one
degree of freedom, for which the total enthalpy is discontinuous
in temperature. This is because the algorithm does not require to
fix the number of equilibrium phases in the iteration. The
advantage of the proposed algorithm is pronounced when the
fluid of interest exhibits complex phase appearance/disappear-
ance, and/or when narrow-boiling behavior is involved, as in
thermal compositional flow simulation.

2. The initialization of PH flash is possible even when no reliable
information is available about the equilibrium phases of the
fluid of interest. In this research, sampling compositions were



Table 6
Compositions of the four sampling points at the 39th iteration (case 3).

Composition 1 Composition 2 Composition 3 Composition 4

xij 4.197334218 � 10�1 7.378538213 � 10�1 6.879222220 � 10�1 9.980050616 � 10�1

1.843513051 � 10�1 9.476609831 � 10�2 7.622206172 � 10�2 1.976024256 � 10�3

3.493368998 � 10�1 1.569487131 � 10�1 1.883863288 � 10�1 1.891409537 � 10�5

4.657837340 � 10�2 1.043136733 � 10�2 4.746938752 � 10�2 5.853975844 � 10�13
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placed near compositional vertices for such cases. Also, addi-
tional sampling compositions were randomly distributed in
composition space. No K-value correlation is necessary to
initialize the new algorithm.

3. The algorithm offers the flexibility in terms of robustness and
efficiency depending on the number of sampling compositions
(NS) used. It becomes more robust with increasing NS at the
expense of computational efficiency. As NS increases, the algo-
rithm become more robust because the possibility of finding all
stationary points of the tangent-plane distance function in-
creases. However, the number of iterations required tends to
increase with increasing NS because the algorithm with more
sampling compositions may take more iterations whenmerging
and adding some of the sampling compositions.

4. The algorithm presented in this paper is substantially different
from that of Gupta et al. [33]. An important difference comes
from the difference in formulation; that is, they introduced an
additional set of equations that was called “stability equations”
in their paper. However, this research clearly showed that the
complete formulation does not require Gupta et al.’s stability
equations. Consequently, the Jacobian matrix in the new algo-
rithm is always smaller than that of Gupta et al.

5. The general condition for narrow-boiling behavior is that the
interplay between the energy and phase behavior equations is
significant. Two subsets of the narrow-boiling condition were
derived by analyzing the convex function whose gradient vec-
tors consist of the RR equations; (i) the overall composition is
near an edge of composition space, and (ii) the solution condi-
tions (temperature, pressure, and overall composition) are near
a critical point, including a critical endpoint. A special case of the
first specific condition is the fluids with one degree of freedom,
for which enthalpy is discontinuous in temperature space.

6. The analysis of the RR convex function gave the clear limiting
conditions toward which the tendency of narrow-boiling
behavior increases. Narrow-boiling behavior tends to occur in
thermal compositional simulation likely because water is by far
the most dominant component in the fluid systems formed in
the simulation.

Acknowledgments

This research was funded by research grants from the Natural
Sciences and Engineering Research Council of Canada (RGPIN
418266), Japan Petroleum Exploration Co., Ltd. (JAPEX), and Japan
Canada Oil Sands Ltd. (JACOS). Di Zhu also received financial sup-
port from the China Scholarship Council. We gratefully acknowl-
edge these supports. Section 3 of this paper was presented at the
2015 SPE Reservoir Simulation Symposium, 23e25 February,
Houston, Texas, U.S.A.

Nomenclature
Roman Symbols
a Parameter defined in equation 14
b Parameter defined in equation 14
D Diagonal matrix defined in equation 15
F Non-monotonic convex function defined in equation 13
fij Unified tangent-plane-distance equations define in

equation 8
gj Material-balance equations [for j ¼ 1, 2, …, (NP ‒ 1)]

defined in equation 10
gNP Enthalpy equation defined in equation 4
H Enthalpy or the Hessian matrix defined in equation 15
H Molar enthalpy
Kij K value of component i in phase j
L1 Oleic-rich liquid phase
L2 Solvent-rich liquid phase
NC Number of components
NP Number of sampling points that are included in material-

balance equations
NS Number of sampling points
NU Number of sampling points that are excluded from

material-balance equations
P Pressure
S Molar entropy
ti Parameter defined in equation 10
T Temperature
V Vapor phase
W Aqueous phase
xij Mole fraction of component i in phase j
Y Symmetric matrix defined in equation 15
zi Mole fraction of component i in a mixture

Greek Symbols
bj Mole fraction of phase j
b Vector of independent mole fractions bj for j¼ 1, 2,…, (NP

‒ 1) used in equations (13) and (14)
qj Stability variable of phase j as calculated by equation 11
4ij Fugacity coefficient of component i in phase j
ε Convergence criterion

Subscripts
D Dimensionless property
i Component index
j Phase index
L Lower limit
r/Ref Reference value
spec Specified value
U Upper limit
w Water component

Superscripts
k Iteration-step number
t Total property
T Transpose

Abbreviations
BIP Binary interaction parameter
BSB Bob Slaughter Block
CB Bitumen
CGB Athabasca (GCOS) dead bitumen
D Tangent plane distance function
DS Direct substitution
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EOS Equation of state
PH Isobaric isenthalpic
PR Peng-Robinson
PT Isobaric isothermal
RR Rachford-Rice
Appendix A. Flow chart of the multiphase isenthalpic flash
algorithm integrated with stability analysis
NP 1 Feasible RR?

NP = 1?

NO

YES

NO

YES

YES

NO

Update K values in composition space for j = 1, 2, , NS

Construct the NP NP Jacobian matrix

Jacobian condition number < ?

YES

Perform one Newton's iteration step to obtain j
(k+1) and TD(k+1) for j = 1, 2, ..., NP

YES

TDL < TD(k+1) < TDU ? NO

Calculate lnKij(k+1) = lnKij(k) + [TD(k)(TD(k+1) TD(k))/TD(k+1)]( lnKij/ TD)(k) for j = 1, , 2, , NS(k = k + 1)

NO

YES

Let tL = max{TD(k), TDL} for gNP < 0,
tU = min{TD(k), TDU} for gNP > 0

Calculate TD(k + 1) = 0.5(tL + tU)

NO

YES

NO

Let tL = TD(k+1) for gNP(k+1) < 0,
and tU = TD(k+1) for gNP(k+1) > 0

(k = k + 1)

YES

|gNP(k+1)| < h?

Jacobian condition number < ?

Update TD(k+1) using Regula Falsi method

NO
Set (k) = 0 and (k) 0 for the
sampling composition that has
maximum D value within set P

NO

NO

YES

YES

Update reference composition and K values

Specify Hspec, P, , Tc, Pc, , and BIPs
Set iteration number k = 1, and input TD(k)

Set NS sampling compositions for j = 1, 2, ..., NS

Calculate Dj with as the reference composition, and select the sampling
composition with the minimum D value as the reference composition
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(k), j

(k) and TD(k)

Output , j
(k+1),
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(k+1) and TD(k+1)
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(k) > 0 for j = (NP + 1), (NP + 2), , NS?Update NP NOUpdate reference composition and K values

for j, q = 1, 2, , NS, j q?YESDelete the jth sampling point if j
(k) > 0

Add a new sampling point , and update reference composition

Solve equation 10 to obtain j
(k) and for j = 1, 2, , NPd

Calculate j
(k) and for j = (NP + 1), (NP + 2), , NS

YES

and |gNP(k)| < h?

Perform PT flash at TD(k+1) to calculate j
(k+1),

j
(k+1), and , such that for

j = 1, 2, , NS , and j rddd jjj
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Appendix B. Jacobian matrix and analysis of the system of
equations

Appendix B-1. Jacobian matrix

The elements of the Jacobian matrix used in the proposed al-
gorithm for a NC-component NP-phase system are

vgj
vTD

¼ �Tref
XNC

i¼1

zi
t2i

�
tiKij

vInKij

vT

� �
Kij � 1

�XNP�1
k¼1

bkKik
vInKik
vT

�
for j

¼ 1; 2;/; NP � 1; (B-1)

vgj
vbk

¼
XNC

i¼1

zi
t2i

�
1� Kij

�ð1� KikÞ for j; k ¼ 1; 2;/; NP � 1;

(B-2)

vgNP

vTD
¼Tref

XNP

j¼1
bj

0
@XNC

i¼1

vxij
vT

HIG
i

Hspec
þ
XNC

i¼1

xij
Hspec

vHIG
i

vT
þ
vHdep

Dj

vT

1
A;

(B-3)

vgNP

vbk
¼
�
HIGM

Dk þHdep
Dk

�
�
�
HIGM

DNP
þHdep

DNP

�
for k¼1; 2;/; NP�1;

(B-4)

where ti ¼ 1�PNP�1
j¼1 ð1� KijÞbj for i ¼ 1, 2, …, NC,

gj ¼
PNC

i¼1ð1� KijÞzi=ti ¼ 0 for j ¼ 1, 2, …, (NP ‒ 1), and

gNP¼ (HteHspec)/Hspec¼ 0. Pertinent derivatives used can be found
in Zhu and Okuno [36].

Appendix B-2. Analysis of the system of equations

The Jacobian matrix of NP � NP can be written as follows:

J ¼

2
666666666664

vgNP

vTD

vgNP

vb1
/

vgNP

vbNP�1

vg1
vTD

vg1
vb1

/
vg1

vbNP�1

« « 1 «

vgNP�1

vTD

vgNP�1

vb1
/

vgNP�1

vbNP�1

3
777777777775

¼

2
664

J11 J12 / J1NP

J21 J22 / J2NP

« « 1 «
JNP1 JNP2 / JNPNP

3
775 ¼

�
J11 P1�ðNP�1Þ

Q ðNP�1Þ�1 RðNP�1Þ�ðNP�1Þ

�
;

(B-5)

where J11 is equation B-3, Q(N
P

‒1) � 1 consists of equations B-1,
P1 � (N

P
‒1) consists of equations B-4, and R(N

P
‒1) � (N

P
‒1) is the

Hessian matrix of F consisting of equations B-2.
Gaussian elimination for Q(N

P
‒1) � 1 yields

J
0 ¼

�
J11 P1�ðNP�1Þ

0ðNP�1Þ�1 R
0ðNP�1Þ�ðNP�1Þ

�
; where R

0

¼ 1
J11

2
4 J22J11 � J12J21 / J2NP

J11 � J1NP
J21

« 1 «
J2NP

J11 � J12JNP1 / JNPNP
J11 � J1NP

JNP1

3
5 (B-6)
Equation B-6 clearly indicates that the system of equations tend to
be degenerate with increasing J11, regardless of the curvature of the
RR convex function.

Also, matrix J is singular, when R is not of full rank. To see this,
consider matrix J when the pth and qth phases are critical (p s q).
As described in Okuno et al. [9], Jmp¼ Jmq, where m¼ 2, 3,…, NP, for
such a case. J1p ¼ J1q when the compositions of the two phases are
identical. Therefore, the pth and qth columns of matrix J are
identical when R is not of full rank.
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