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ABSTRACT: Reliable design of solvent injection for oil recovery requires accurate representation of multiphase behavior in a
wide range of pressure−temperature−composition conditions. Volume shift is often required to improve density predictions,
separately from compositional behavior predictions, in conventional fluid characterization methods (CM). Thermodynamically,
however, volumetric behavior predictions are consequences of compositional behavior predictions. We develop a new fluid
characterization method (NM) that gives accurate multiphase behavior representation for oil/solvent mixtures without volume
shift. The Peng−Robinson EOS is used with the van der Waals mixing rules. The NM is compared with the CM in terms of
phase diagrams, minimum miscibility pressure calculations, and oil displacement simulations. It is shown that the CM with
volume shift can give erroneous phase behavior and oil recovery predictions. The NM requires no volume shift to achieve
accurate predictions of compositional and volumetric phase behaviors. The two types of phase behaviors are properly coupled in
the NM.

1. INTRODUCTION

Solvent methods for enhanced oil recovery and heavy-oil
recovery have been studied and implemented in oil fields (e.g.,
Mohanty et al.;1 DeRuiter et al.2). Various steam/solvent
coinjection schemes are also proposed in the literature3−7 to
improve efficiency of the conventional steam-assisted gravity
drainage. Reliable design of such oil recovery processes requires
compositional reservoir simulation to model mass transfer
among phases using a cubic equation of state (EOS).
Cubic EOSs are widely used in the petroleum industry to

model volumetric and compositional phase behavior of
conventional oils. The most widely used cubic EOSs are the
Peng−Robinson (PR) EOS8,9 and the Soave−Redlich−Kwong
(SRK) EOS.10 These EOSs together with the van der Waals
mixing rules are suitable for computationally efficient
representation of vapor−liquid equilibrium for hydrocarbon
mixtures at a wide range of pressures (Okuno et al.11).
However, application of these EOSs for modeling heavy-oil

recovery is not straightforward. For heavy-oil recovery, a typical
operation range in pressure−temperature−composition (P-T-
x) space is much wider than that for enhanced recovery of
conventional oil. When steam and solvent are coinjected for
heavy-oil recovery, reservoir temperatures lie between an initial
reservoir temperature and steam temperatures (e.g., between
290 and 530 K for a typical solvent-steam-assisted gravity
drainage). Also, mixtures of solvent and heavy oils are highly
size-asymmetric, resulting in a wider variety of composition
conditions. The wide operation range in P-T-x space provides
technical challenges for the traditional use of cubic EOSs with
the van der Waals mixing rules.
Fluid characterization using an EOS is conducted based on

experimental data available, which typically consist of
composition analysis and pressure−volume−temperature
(PVT) data. However, it can be difficult to take reliable

downhole fluid samples for heavy oil (Memon et al.;12 Zabel et
al.13). Even when a reliable sample is available for a heavy oil, its
detailed composition is uncertain because of high concen-
trations of nonidentifiable compounds. Availability of exper-
imental data in P-T-x space, especially at different composition
conditions, is often limited for heavy oil mainly because of its
high viscosity and highly uncertain composition. Laboratory
measurements are performed at certain P-T-x conditions. It is
difficult to measure phase behavior along the compositional
path for a given solvent injection in the laboratory. Use of a
reliable fluid characterization method is as important as use of
reliable experimental data to predict phase behavior during
solvent injection processes in compositional simulation. Heavy-
oil PVT data that are measurable include saturation pressures
(PSAT) and densities at different conditions. It is not unusual
that they are the only reliable PVT data for a heavy oil.
Characterization of conventional oils using an EOS has been

developed and implemented in commercial software.14,15 A
typical characterization process consists of four main steps as
follows:

Step 1. Estimation of a molar distribution with respect to
molecular weight (MW) or carbon number (CN) to
split the plus fraction (e.g., C7+) into detailed
components.

Step 2. Estimation of properties for the detailed components
such as critical temperature (TC), critical pressure (PC),
critical volume (VC), acentric factor (ω), and volume
shift parameters.
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Step 3. Grouping of the detailed components into fewer
pseudocomponents.

Step 4. Regression of pseudocomponents’ properties to match
experimental data available.

In step 1, a distribution function is fitted to the composition
analysis data available. Forms of distribution functions
proposed in the literature include the gamma,16 chi-squared,17

and logarithmic distributions.18,19 The gamma distribution is
the most general form among the three and reduces to the
other two when certain assumptions are used. The logarithmic
distribution is a widely used form for conventional oil
characterization, where composition analysis can provide
composition information for a large fraction of the fluid.
Heavy oils often require more flexible distribution functions,
such as the gamma and chi-squared ones, to match their
composition analysis data (Ghasemi et al.20). Regardless of the
type of the distribution function used, however, the reliability of
the resulting molar distribution depends primarily on how
much uncertainty is left as a plus fraction in composition
analysis.
Step 2 uses correlations to estimate properties of the split

components because critical properties measured for hydro-
carbons heavier than C24 are not available (Ambrose and
Tsonopoulos21). These correlations include Cavett,22 Edmis-
ter,23 Kesler and Lee,24 Riazi and Al-Sahaff,25 Korsten,26 Riazi
and Daubert,27,28 Twu,29 and Lee and Kesler.30 The
correlations of Pedersen et al.31−33 are functions of MW and
density at atmospheric conditions, which are in turn functions
of CN. These correlations are developed for an EOS to
reproduce vapor pressures and the critical point for the
pseudocomponent of a given CN. However, the PR and SRK
EOSs with these correlations cannot accurately model densities
of heavy hydrocarbons unless volume shift parameters34,35 are
used. Krejbjerg and Pedersen36 developed new correlations for
TC, PC, and ω for heavy-oil characterization. Their correlations
do not attempt to model three-hydrocarbon-phase behavior,
although such phase behavior often occurs for highly
asymmetric mixtures of heavy oil with solvent (Polishuk et
al.37).
Step 3 reduces the number of components used in the fluid

model and calculates properties of each pseudocomponent by
averaging over its member components. Use of fewer
components can make EOS calculations more efficient, but it
can also result in erroneous predictions of phase behavior due
to reduced dimensionality in composition space. Common
grouping procedures in the literature include the ones of
Pedersen et al.19 and Whitson and Brule.̀14 The former uses the
equal mass grouping with mass-weighted averaging of proper-
ties, while the latter uses the Gaussian quadrature grouping
method with mole-weighted averaging.
In the equal mass grouping approach, detailed split

components are grouped into fewer pseudocomponents that
have an approximately same mass. The critical properties for a
pseudocomponent are estimated by taking the mass-weighted
average of the critical properties of member components for
that pseudocomponent. In the Gaussian quadrature grouping
method of Whitson and Brule,̀14 each pseudocomponent has a
wider range of molecular weights, and a component may be
present in multiple pseudocomponents (Pedersen and
Christensen15). Representative critical properties for a
pseudocomponent are estimated by taking the mole-weighted
average of critical properties of member components for that

pseudocomponent. Joergensen and Stenby38 conducted a
comparative study of 12 different grouping methods and
concluded that it was difficult to single out the best grouping
method.
As mentioned before, simulation of solvent methods for

heavy-oil recovery requires reliable representation of phase
behavior at a wide range of composition conditions. Therefore,
a reliable fluid model for solvent/heavy-oil mixtures often
requires more components than that for solvent/conventional-
oil mixtures.
Step 4 is often needed because each of steps 1−3 makes

certain assumptions resulting in deviations of predictions from
actual phase behavior. Regression procedures for conventional
oil characterization are discussed in detail in Whitson and
Brule ̀14 and Pedersen and Christensen.15 Typical parameters
adjusted in this step include TC, PC, ω, volume shift parameters,
and binary interaction parameters (BIPs) for pseudocompo-
nents. The constant terms of the attraction and covolume
parameters of a cubic EOS, Ωa and Ωb, are sometimes adjusted,
but this is not recommended, as explained by Wang and
Pope.39 These adjustment parameters offer flexibility that may
be required to match various types of PVT data such as PSAT,
constant mass expansion, constant volume depletion, differ-
ential liberation, separator tests, swelling tests, minimum
miscibility pressures, and viscosity data. Different EOS fluid
models can result depending on which parameters are adjusted
and how much they are adjusted (Lolley and Richardson40).
As described above, each of steps 1−4 is more difficult for

heavy oil than for conventional oil. The main reason for the
difficulties is that heavy-oil characterization is conducted under
high uncertainties in oil composition, components’ properties
(e.g., TC, PC, and ω), and phase behavior in P-T-x space. Also,
considering direct use of EOS fluid models in compositional
simulation, it is undesirable that modeling heavy-oil/solvent
mixtures often requires many components to accurately model
their phase behavior.
In this research, a new characterization method is developed

for simulation of enhanced oil recovery and heavy-oil recovery.
The uncertainty issues discussed above are addressed by
incorporating physical observations into our procedures for
critical parameter estimation, step 2, and regression, step 4.
Since density data are easier to obtain than composition data,
our method effectively uses density data to improve phase
behavior predictions in P-T-x space; that is, volume shift
parameters are not required in our characterization method. In
the following section, the conventional characterization method
used in this research is defined. We then present a new
characterization method and its application to 22 different
reservoir oils. Comparisons are made between the new and
conventional characterization methods in terms of phase
behavior predictions in P-T-x space for actual reservoir oils
and their mixtures with solvents.

2. CONVENTIONAL CHARACTERIZATION METHOD
USED IN THIS RESEARCH

The conventional characterization method used in this research
is based mainly on Pedersen and Christensen15 and Wang and
Pope.39 The method of Pedersen and Christensen15 has been
implemented in the PVTsim software of Calsep.41 Descriptions
are given below for the conventional characterization steps 1−4
(see the introduction section for the definitions of the steps).
All characterizations in this research assume that PVT data
available include the oil composition, the oil PSAT at the
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reservoir temperature, and liquid densities and viscosities at
different pressures at the reservoir temperature. All EOS
calculations in this research use the PR EOS, eq 1, with the van
der Waals mixing rules.

α
=
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−

+ −
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v b

a T
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Step 1 of the conventional method assumes a logarithmic
distribution for splitting a plus fraction. In step 2, critical
properties, such as TC, PC, and ω, are estimated using Krejbjerg
and Pedersen.36 Step 3 uses the equal-mass grouping with
mass-weighted averaging of properties.
Although there is no well-defined regression scheme for step

4 due to its high flexibility in the conventional method, Figure
S1 in the Supporting Information depicts the conventional
regression scheme used in this research, which is based on
Pedersen and Christensen15 and Christensen.42 Adjustments
are made for TC, PC, and ω of pseudocomponents to match the
PSAT at the reservoir temperature. Adjustment parameters are
selected based on their sensitivities to PSAT calculation
(Voulgaris et al.43).
After matching the PSAT, density data at different pressures at

the reservoir temperature are matched. We consider two
options here; one is to adjust TC, PC, and ω, and the other to
adjust volume-shift parameters (the CPEN parameters in the
PVTsim software). The second option is widely used in the
literature. In this paper, the conventional methods with the first
option and with the second option are referred to as the
CMw/oV and CMwV, respectively. The CMw/oV and CMwV are
collectively called the CM. The CMwV will be compared with
our new method (NM) developed in the next section, both
with 11 components. The CMw/oV will be used with 30
components to generate pseudodata for the comparisons. The
regression step confirms that TC and PC have physically correct
trends with respect to MW; that is, TC monotonically increases
and PC monotonically decreases with increasing MW.
VC for pseudocomponents are also adjusted to match

viscosity data using the Lohrenz−Bray−Clark (LBC)
model.44 BIPs are not adjusted in this research. These two
notes also apply for the NM described in the next section.
The PVTsim software is used as part of the CM because its

flexibility enables to apply the most prevalent characterization
procedure in the literature (see Figure S1 in the Supporting
Information). It requires stepwise manual adjustment of
parameters based on engineering judgments, which can be

done with PVTsim. In the CM, TC, PC, and ω for each
pseudocomponent are tuning parameters. For example, use of
four pseudocomponents results in 12 adjustment parameters.
Parameter values resulting from a regression process depend on
the weights assigned to sets of experimental data, the ranges of
variation allowed for parameters, and the order of parameter
adjustments. Special care must be taken by experienced
engineers to ensure smooth and physically justifiable curves
for TC, PC, and ω with respect to MW. Automated robust
characterization is possible when the automatic regression
keeps physically justifiable trends of parameters, which is
achieved in the NM as will be discussed. Note that the NM also
satisfies Pitzer45 and Pitzer et al.’s46 definition of acentric factor
for each component.

3. NEW CHARACTERIZATION METHOD BASED ON
PERTURBATION FROM N-ALKANES

The new characterization method (NM) developed in this
section addresses two major issues that the CM can pose when
applied for heavy-oil characterization. These issues, which are
described below, come essentially from the fact that heavy-oil
characterization must be conducted under high uncertainties in
oil composition, components’ properties (e.g., TC, PC, and ω),
and phase behavior in P-T-x space. In the following subsections,
we first describe the issues of the CM. Our development of the
NM is then presented in detail.

3.1. Issues of The Conventional Method. One of the
two major issues is in step 2, estimation of pseudocomponents’
properties. Conventional correlations for pseudocomponents’
properties in the literature are typically functions of two
parameters (e.g., MW and specific gravity). The fundamental
reason for use of two types of parameters is that a CN group
contains a wide variety of compounds. One way to categorize
hydrocarbon compounds is paraffins, naphthenes, and
aromatics (PNA). TC and PC of paraffins are in general lower
than those of aromatics within a given CN group (Kumar and
Okuno47). The trend is the other way around for ω. That is,
one of the two parameters, specific gravity, is required to
consider the effects of a PNA distribution within a CN group
on critical properties of the CN group. However, specific
gravities of pseudocomponents in a plus fraction are unknown.
They are then estimated using a function of CN in Pedersen
and Christensen.15 In this way, a certain PNA distribution is
implicitly assumed in the CM for property estimation, and the
PNA distribution assumed is not well-defined for users.
The PNA distribution implicitly set is coupled with a

shortcoming of cubic EOSs in the CM. That is, even when TC,
PC, and ω of a well-defined hydrocarbon (e.g., a n-alkane
compound) are given, cubic EOSs are inaccurate in predicting
its liquid densities unless a volume shift parameter is used
(Ting et al.;48 Voutas et al.;49 Yakoumis et al.50). This
shortcoming of cubic EOSs is more serious for heavier
hydrocarbons (Kumar and Okuno51). Regression in step 4
then attempts to decrease errors caused by the coupled
problem mentioned above, where adjustments of TC, PC, and ω
must be performed with little justification in a physical sense.
Another major issue addressed in this research is the

separation of volumetric and compositional behaviors using
volume shift parameters in the CMwV. For heavy oil, available
experimental data are mostly volumetric ones, instead of
compositional ones. Volume-shift parameters are typically
needed when the CM is used with a small number of
components to match heavy-oil density data. In such a case,
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compositional behavior predictions of the resulting fluid model
depend significantly on how much one relies on volume shift
parameters to match density data.
Thermodynamically, however, volumetric phase behavior,

including densities, is a consequence of compositional phase
behavior; that is, compositional and volumetric phase behaviors
should not be modeled separately. Density data for a given fluid
contain its composition information. The CMwV does not
effectively use density data to improve compositional phase
behavior predictions. Although composition analysis is often
difficult for heavy oils, density data can supplement composi-
tional data for heavy-oil characterization by minimizing use of
volume-shift parameters. Thus, our NM does not use volume-
shift parameters, which can also reduce the number of
adjustment parameters. Section S2 in the Supporting
Information presents the effects of volume shift parameters
on the Gibbs free energy when used as regression parameters in
reservoir oil characterization.
3.2. Characterization Steps in the New Method. The

most important novelties of the NM lie in steps 2 and 4 as will
be described below. For steps 1 and 3, the NM is based on
Quiñones-Cisneros et al.;17,52−54 that is, the chi-squared
distribution is used for step 1, and the equal-mass grouping
with mass-weighted averaging of properties is used for step 3.
Step 2, estimation of TC, PC, and ω for pseudocomponents,

in the NM is based on the correlations of Kumar and Okuno.51

The PR EOS with the correlations gives accurate predictions of
liquid densities and vapor pressures for n-alkanes from C7 to
C100 without using volume-shift parameters. These correlations
were developed using the optimized critical parameters and m
parameters for the PR EOS for n-alkanes from C7 to C100. The
optimized critical values do not represent the physical critical
points. In reservoir oil characterization, however, physical
critical points of pseudocomponents are not well-defined at
first.
Only n-alkane compounds can form a well-defined

homologous hydrocarbon series. There are sufficient exper-
imental data for the homologous series of n-alkane compounds
in the literature, which were used in Kumar and Okuno.51

The NM considers a PNA distribution of a plus fraction as
perturbation from a limiting distribution of 100% n-alkanes.
Considering the trends of TC, PC, and ω with respect to the
PNA distribution, TC and PC of a pseudocomponent should be
higher than the n-alkane values from the correlations of Kumar
and Okuno.51 Similarly, ω of a pseudocomponent should be
lower than the n-alkane values. The amounts of perturbations
in TC, PC, and ω from the n-alkane values are related to the
concentration of components other than n-alkanes, especially
aromatic components, in the plus fraction. Step 2 of the NM
combines the perturbation concept and the correlations of
Kumar and Okuno,51 as given in eqs 4, 5, and 6.

= − + × − −T f1154.35 844.83(1.0 1.7557 10 MW)c
3

T
2.0

(4)

= −
−⎛

⎝
⎜⎜

⎞
⎠
⎟⎟P

f
559.93

MW
1.49c

P

0.638

(5)

= +
−

m f0.4707 2.4831( MW) f
m

( 39.933
MW )

m (6)

The m parameter in eq 6 is defined in eqs 2 and 3 as a one-to-
one function of ω.

The perturbation factors for TC, PC, and m are expressed as
f T, f P, and fm, respectively. These perturbations are qualitative
deviation of pseudocomponents from n-alkane behavior. The
perturbed values are valid only with the cubic EOS used.
Equations 4−6 reduce to the correlations of Kumar and
Okuno51 for n-alkanes when the perturbation factors are 1.0. As
a pseudocomponent deviates from the n-alkane with the same
MW, f T and f P increase, and fm decreases from the value of 1.0.
Equations 4−6 also consider another physical trend that can

be derived from the correlations of Riazi and Al-Sahhaf25 and
Pan et al.55 Using their correlations, the differences between
aromatics and paraffins in terms of TC and PC decrease with
increasing MW (Figures 1 and 2). In terms of m, the difference

exhibits a maximum around MW of 500 g/mol as shown in
Figure 3. These curves indicate that the effects of nonalkane
compounds on TC, PC, and m vary with MW.
Figures 1−3 also show how TC, PC, and m in our eqs 4−6

deviate from their n-alkane values as the perturbation factors
( f T, f P, and fm) change from unity. Figures 1−3 present that
eqs 4−6 qualitatively represent the physical trends mentioned
above. Figure 1 shows that the sensitivity of TC to f T in eq 4
exhibits a maximum around MW of 200 g/mol, which is not

Figure 1. Differences between aromatics and paraffins for critical
temperature, TCA−TCP, based on the correlations of Riazi and Al-
Sahhaf25 and eq 4. TCA using eq 4 assumes three different f T values for
aromatics, 1.25, 1.40, and 1.60. TCP using eq 4 uses f T of 1.0.

Figure 2. Differences between aromatics and paraffins for critical
pressure, PCA−PCP, based on the correlations of Riazi and Al-Sahhaf,25

Pan et al.,55 and eq 5. PCA using eq 5 assumes three different f P values
for aromatics, 1.75, 2.30, and 3.0. PCP using eq 5 uses f P of 1.0. The
correlation of Pan et al.55 is used for molecular weight larger than 300
g/mol.
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observed from the correlations of Riazi and Al-Sahhaf.25

However, the behavior of TC with respect to f T in the MW
range 100−200 g/mol does not affect practical fluid character-
ization because most of pseudocomponents are out of this MW
range, especially for heavy oils.
Step 4 of the NM uses eqs 4−6 to regress TC, PC, and m of

pseudocomponents for matching PSAT and density data. Figure
S2 and the summary of step 4 given in section S1 (in the
Supporting Information) present the algorithm to adjust f T, f P,
and fm. There are three main iteration loops, the PSAT, density,
and ω loops. The PSAT loop is the innermost loop contained by
the density loop. The ω loop contains the other two loops.
The initial values for f T and f P are 1.0. The fm parameter is

initialized by solving eq 7:

= +
−

f0.6 0.4707 2.4831( MW ) f
m 1

( 39.933
MW )

m 1 (7)

where MW1 is the MW of the lightest pseudocomponent in a
fluid model. The value on the left side of eq 7 (i.e., 0.6) is lower
than the m for benzene, 0.6866 (see eq 2 with ω = 0.21). Use of
eq 7 assumes all pseudocomponents are heavier than C6. The
value 0.6 can be unduly low if MW1 is much greater than the
MW of benzene. However, this value is recommended for
robustness.
In the PSAT loop, f P is adjusted by Δf P (e.g., +10−6) per

iteration to match the PSAT by decreasing the ψ function (eq 8).
Once the ψ function becomes smaller than a tolerance (e.g.,
10−4), the density loop decreases the δ function (eq 9) by
adjusting f T and f P. In the density loop, f P is set to 1.0 at the
beginning of each iteration, and f T is adjusted by Δf T (e.g.,
+10−5) per iteration. If the f T exceeds 3.5 or the δ function at
the current iteration is greater than that at the previous
iteration, then the algorithm moves to the ω loop. The f T value
can be greater than the upper bound of 3.5 when MW1 is much
greater than the MW of benzene in eq 7. The accuracy of
density predictions is less than 1% in AAD for all the oils tested
in the next section.

ψ =
−P P

P

abs(experimental calculated )100

experimental
SAT SAT

SAT (8)

∑δ =
−

=

⎡
⎣⎢

⎤
⎦⎥k

1 abs(experimental density calculated density)100
experimental densityi

k

i1 (9)

The ω loop is to satisfy the internal consistency of TC, PC,
and ω, that is, the definition of ω given by Pitzer45 and Pitzer et
al.46 and in eq 10. Equations 11 and 12 are used to back
calculate ω from the current m for each pseudocomponent.
These ω values are then used in eq 10 to obtain saturation
pressures for pseudocomponents (PSATI) at 0.7TC.

= ω
=

− +P P( ) 10TSAT at 0.7
(1 )

Cr (10)

ω ω
ω
= + −

≤
m 0.37464 1.54226 0.26992 for

0.3984

2

(11)

ω ω ω
ω

= + − +
≥

m 0.379642 1.48503 0.164423 0.016666
for 0.3984

2 3

(12)

Use of the PR EOS with the current TC, PC, and ω yields
another saturation pressure at 0.7TC (PSATII) for each
pseudocomponent. The average absolute deviation ε for PSATI
and PSATII for all pseudocomponents is then calculated using eq
13

∑ε = −
=n

1
Abs(P P )

i

n

1
SATI SATII

(13)

where n is the number of pseudocomponents. If f T is greater
than 3.5 or the ε function at the current iteration is smaller than
that at the previous iteration, fm is increased by Δfm (e.g.,
+10−3) to continue on the ω loop. For each ω iteration, f T and
f P start with 1.0. The final values for f T, f P, and fm are
determined when the ε function becomes greater than that at
the previous iteration. The final set of f T, f P, and fm gives the
first minimum of the ε function encountered in the calculation.
In the regression algorithm, the initial value is 1.0 for f T and

f P, corresponding to the n-alkane values in Kumar and
Okuno.51 The search direction for f T and f P is the increasing
direction from their initial values because pseudocomponents’
TC and PC should be higher than n-alkane’s value for a given
MW. Therefore, Δf T and Δf P are positive to be physically
justified. We set a lower bound for fm in eq 7, which is used as
the initial fm value. Thus, Δfm should also be positive. If the
converged fm is smaller than 1.0, it is consistent with the ω
perturbation concept that pseudocomponents’ ω should be
lower than n-alkane’s value for a given MW.
The regression algorithm in the NM provides a unique set of

TC, PC, and m unlike the CM, where the resulting TC, PC, and m
depend on the selection of adjustment parameters and
adjustment amounts for them. Our regression algorithm can
work with fewer adjustment parameters, compared to the CM,
because of the physical observations incorporated in its
development.
Equations 11 and 12 are different from eqs 2 and 3 in terms

of their ω ranges. Equations 2 and 3 give the same value for m
at ω = 0.39839, but not at the boundary ω = 0.49. The value of
0.39839 falls in the ω range 0.20−0.49 that is recommended for
both eqs 2 and 3 by Peng and Robinson.9 Therefore, the value
of 0.3984 is chosen as the boundary value for eqs 11 and 12.
In general, the PR EOS overpredicts the molar volume for

hydrocarbons heavier than heptane (Søreide56). The values for
the critical parameters must be increased to match densities and
vapor pressures regardless of the hydrocarbon compound type

Figure 3. Differences between aromatics and paraffins for the m
parameter, mP−mA, based on the correlations of Riazi and Al-Sahhaf,25

Pan et al.,55 and eq 6. The m parameter is defined in eqs 2 and 3. mA
using eq 6 assumes three different fm values for aromatics, 0.60, 0.65,
and 0.70. mP using eq 6 uses fm of 1.0. The correlation of Riazi and Al-
Sahhaf25 is used for mP, and the correlation of Pan et al.55 is used for
mA.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie402198z | Ind. Eng. Chem. Res. 2014, 53, 440−455444



(i.e., P or N or A). Also, the density of an aromatic
hydrocarbon is higher than that of n-alkane for a given MW.
Although the correlations used for n-alkanes do not represent
physical critical points, the search directions described above
are still valid as will be demonstrated in the next section.
The NM developed in this section uses the PR EOS.

However, it can also be used with other cubic EOSs if a new set
of critical parameters is developed for the selected cubic EOS as
Kumar and Okuno51 did for the PR EOS. The regression
algorithm assumes that densities, viscosities, and PSAT data are
the only PVT data used in characterization. More adjustment
parameters may be used when more PVT data are available,
especially at different composition conditions. The regression
algorithm can be extended for such a case by using molar
distribution parameters as variables and creating additional
loops. For example, the chi-squared distribution has two
parameters, which influence mole fractions and MWs of
pseudocomponents. These adjustment parameters will be
effective especially for heavy oils, considering the importance
of molar distributions of pseudocomponents in EOS
calculations. BIPs for pseudocomponent/nonhydrocarbon
(e.g., CO2) pairs can significantly affect phase behavior
calculations. We, however, recommend that the regression
step should minimize the number of adjustment parameters to
avoid physically absurd adjustment of parameters.

4. CHARACTERIZATION OF RESERVOIR OILS USING
THE NEW METHOD

In this section, the NM is applied to 22 different reservoir oils
ranging from 9.5°API to 60.18°API. The oils are actual
reservoir oils, for which data are available in the literature as
shown in Table 1. The number of pseudocomponents is fixed
to be four for the 22 oils. Mole fractions and MWs of
pseudocomponents for oils 1−13 and 18−20 are taken directly
from the corresponding references, which are based on the chi-

squared distribution. PSAT and reservoir temperature data are
available in the references as numerical values for the 22 oils.
Many of the density data used have been obtained by digitizing
density plots in the references. The number of density data
points used is given for each oil in Table 1.
Figure 4 shows how the ε function varies with fm for oils 5, 6,

and 9. Step 4 of the NM converges to the final set of f T, f P, and

fm (and corresponding TC, PC, and m) at a minimum ε value for
each oil. The same behavior of fm occurs for the other oils
studied in this research.
Table 1 lists the converged f T, f P, and fm values for the 22

oils studied. Figures 5, 6, and 7 show the relationship between
the API gravity and the converged f T, f P, and fm values,
respectively. For all the oils, the converged f T and f P values are
greater than 1.0, and the converged fm values are smaller than

Table 1. Twenty Two Reservoir Oils Characterized in This Research and Converged f T, f P, and fm Values Using the New
Characterization Method

oil no. refs MW (gm/mol) oAPI reservoir temp. (K) no. of density data (k in eq 9) f T f P fm

1 Quiñones-Cisneros et al.,54 Oil-8 443.08 9.50 322.05 13 2.12110 1.74580 0.359
2 Quiñones-Cisneros et al.,54 Oil-7 431.59 11.63 322.05 12 1.71016 1.65705 0.368
3 Quiñones-Cisneros et al.,52 Oil-6 377.88 13.38 322.05 13 2.91379 1.83307 0.246
4 Quiñones-Cisneros et al.,52 Oil-5 422.94 11.98 322.05 13 1.81952 1.67153 0.379
5 Quiñones-Cisneros et al.,52 Oil-1 170.59 20.81 330.40 16 2.94230 1.78866 0.406
6 Quiñones-Cisneros et al.,53 Oil-8 182.05 24.25 333.15 16 2.81319 1.91049 0.429
7 Quiñones-Cisneros et al.,53 Oil-7 159.99 29.24 330.40 16 2.31276 1.74384 0.440
8 Quiñones-Cisneros et al.,53 Oil-6 118.18 35.61 346.15 5 2.08100 1.71149 0.434
9 Quiñones-Cisneros et al.,53 Oil-5 130.55 28.30 337.85 3 2.89841 1.84940 0.453
10 Quiñones-Cisneros et al.,53 Oil-4 114.57 33.35 337.85 6 2.46282 1.74305 0.493
11 Quiñones-Cisneros et al.,53 Oil-3 87.80 40.46 337.25 5 2.35278 1.64743 0.554
12 Quiñones-Cisneros et al.,53 Oil-2 89.83 47.63 366.45 11 2.09759 1.47213 0.540
13 Quiñones-Cisneros et al.,53 Oil-1 86.57 60.18 427.60 13 1.39453 1.18216 0.641
14 oila 296.90 22.60b 357.50 13 2.19267 1.61825 0.309
15 Coats and Smart,77 Oil-1 123.79 34.04 355.37 8 2.63596 1.84711 0.402
16 Coats and Smart,77 Oil-6 83.31 55.73 385.37 20 2.06638 1.44575 0.453
17 Coats and Smart,77 Oil-7 113.60 45.03 328.15 20 1.95919 1.47130 0.500
18 Quiñones-Cisneros et al.,17 Oil-5 240.24 20.19 345.93 15 1.55725 1.57795 0.585
19 Quiñones-Cisneros et al.,17 Oil-4 167.03 25.70 344.95 11 2.12027 1.68612 0.588
20 Quiñones-Cisneros et al.,17 Oil-3 114.65 34.24 337.85 12 2.04203 1.60648 0.616
21 Cullick et al.,78 Light Oil 105.28 43.68 377.59 8 1.99705 1.54570 0.414
22 Pedersen et al.,32 Fluid-1 124.57 35.73 344.75 8 1.86796 1.54972 0.614

aThis is an actual oil, but the source is not mentioned for confidentiality. bAs reported. All other densities are calculated values.

Figure 4. Convergence behavior for the ε function (eq 13) with fm for
oils 5, 6, and 9 given in Table 1. The regression algorithm (Figure S2
in the Supporting Information) finds an optimum set of f T, f P, and fm
at the minimum shown for each oil.
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1.0. These results indicate that the regression algorithm
successfully found the solutions that are consistent with the
perturbation concept described in the previous section.

Figures 5−7 also show a trend that f T, f P, and fm are
converging toward 1.0 as the API gravity becomes larger. This
is likely because the paraffinic portion of the PNA distribution
for a lighter oil is greater than that for a heavier oil. The PNA
distribution of a heavy oil in general can deviate significantly
from the reference distribution of 100% n-alkanes because a
heavier CN group allows for a wider variety of compounds in it.
Unlike manual adjustments performed in the CM, the

regression process in the NM can be easily codified for
automation and takes only 1−3 min per oil using our code
written in FORTRAN on the Intel Core i7−960 processor at
3.20 GHz and 8.0 GB RAM. The algorithm presented is based
on the exhaustive search method of optimization for robust-
ness. More rapid convergence would be achieved if a gradient
method is used with initial guesses for f T, f P, and fm based on
the previous iteration steps.

5. COMPARISON BETWEEN THE NEW AND
CONVENTIONAL METHODS

We now make comparisons between the NM and CM in terms
of various types of phase behavior predictions in P-T-x space
for the oils in Table 1. PVT data for heavy oils are scarce as
described in the introduction section and in the literature.57,58

Data types used in this research are oil compositions, oil PSAT at
reservoir temperatures, and liquid densities and viscosities at
different pressures at reservoir temperatures. Other than these
measured data, pseudodata59 were generated using the CMw/oV
with 30 components (see Figure S1 in the Supporting
Information) because a complete set of data suitable for
comparisons in a wide P-T-x range is not available for heavy
oils. The 30 components consist of N2, CO2, C1, C2, C3, C4, C5,
C6, and 22 pseudocomponents for the C7+ fraction.
Fluid characterization using a cubic EOS can result in

deviation between predictions and data for a few fundamental
reasons: (1) the functional form of the EOS used, (2) the
characterization of the attraction (“a”) and covolume (“b”)
parameters based on critical parameters, (3) the critical
parameters used, and (4) the number of components used.
The focus of the comparisons in this section is on items 3 and
4. Thus, the comparisons are made among different fluid
models that have different critical parameters and numbers of
components for the PR EOS (i.e., for a fixed cubic EOS and a
characterization method for a and b).
If the number of components in the fluid of interest was

known and used in the fluid model, there should be no errors
caused solely by reduction in composition space. We have
conducted a sensitivity analysis for the effects of the number of
components used on phase behavior predictions (Figures 8 and
9). The results indicate that use of 22 pseudocomponents is
appropriate for generating pseudodata in this research. The
differences in predictions are diminishing as the number of
pseudocomponents used becomes more than 16. This result is
consistent with other papers in the literature.40,60,61 Also, the
CMw/oV method used for generating pseudodata follows the
method of Pedersen et al.31−33 It has been found that this
method generally has a high predictive capability62 when
properly used (see Figure S1 in the Supporting Information).
Given the above, the pseudodata generated can be

interpreted as phase behavior data for a PR fluid, a fluid that
behaves as described by the PR EOS. Global phase diagrams of
binary (Mushrif,63 Yang,64 Mushrif and Phoenix65) and ternary
(Gauter,66 Gauter et al.67) mixtures have been successfully
represented using the PR EOS. Their results show that the PR

Figure 5. Converged f T values for the 22 different oils in Table 1. The
regression algorithm (Figure S2 in the Supporting Information) starts
with f T =1.0, and searches for an optimum f T in the increasing
direction. Perturbation of f T from 1.0 qualitatively represents deviation
of a plus fraction from an n-alkane mixture.

Figure 6. Converged f P values for the 22 different oils in Table 1. The
regression algorithm (Figure S2 in the Supporting Information) starts
with f P =1.0, and searches for an optimum f P in the increasing
direction. Perturbation of f P from 1.0 qualitatively represents deviation
of a plus fraction from an n-alkane mixture.

Figure 7. Converged fm values for the 22 different oils in Table 1. The
regression algorithm (Figure S2 in the Supporting Information) starts
with fm based on eq 7, and searches for an optimum fm in the
increasing direction. Perturbation of fm from 1.0 qualitatively
represents deviation of a plus fraction from an n-alkane mixture.
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EOS is capable of predicting at least qualitatively accurate phase
behavior for reservoir fluids. When experimental data are not
available or measurable, use of synthetic or pseudodata has
been recommended for developing thermodynamic fluid
models (Satyro et al.68). In the present research, the validation
of the NM is made against pseudodata for PR fluids. We believe
this is a reasonable approach in the absence of reliable
experimental data other than oil compositions, densities,
saturation pressures, and viscosities. There is also an important
benefit using the pseudodata. Meaningful comparisons in any
conditions in P-T-x space, particularly along the composition
path for a given displacement at a given dispersion level, may be
possible only with the pseudodata.
Separately from the 30-component models created for

pseudodata, two fluid models are created for each oil using
the NM and CMwV with 11 components (see Figures S1 and
S2 in the Supporting Information for the CMwV and NM
algorithms, respectively). The 11 components consist of N2,
CO2, C1, C2, C3, C4−5, C6, and four pseudocomponents for the
C7+ fraction.
BIPs are not adjustment parameters in this research. Fixed

BIP values are used for the 22 oils. BIPs are zero for
hydrocarbon-hydrocarbon pairs. Nonzero values are used for
nonhydrocarbon−hydrocarbon and nonhydrocarbon−nonhy-

drocarbon pairs, that is, N2−hydrocarbons, CO2−hydro-
carbons, and N2−CO2.
We adjust no BIPs and set BIPs of hydrocarbon-hydrocarbon

pairs to zero for the following reasons:

(1) The number of regression parameters should be
minimized (Wang and Pope;39 Egwuenu et al.60). Use
of BIPs as regression parameters can damage the
predictive capability of the resulting fluid model (Wang
and Pope39).

(2) Nonzero BIPs for hydrocarbon-hydrocarbon pairs may
lead to nonphysical liquid-phase split (Pedersen et al.69).

(3) Use of zero BIPs can improve computational efficiency
(Egwuenu et al.;60 Michelsen70). It has also been shown
that fluid properties can be better predicted when most
of BIPs are set to zero (Pedersen and Christensen15).

(4) Use of negative BIPs, which may occur after regression,
can cause nonconvergence in successive substitution for
flash calculations (Heidemann and Michelsen71).

The BIPs for N2-hydrocarbons, CO2-hydrocarbons, and N2−
CO2 are fixed to be some nonzero values. The CM uses the
default values from PVTsim as they would be the most suitable
values for PVTsim. They are −0.017 for N2−CO2, 0.0311 for
N2−C1, 0.0515 for N2−C2, 0.0852 for N2−C3, 0.08 for N2−C4,
0.1 for N2−C5, 0.08 for N2−Ci, where i ≥ 6, 0.12 for CO2,−Cj,
where 1 ≤ j ≤ 6, and 0.1 for CO2-pseudocomponents. These
BIPs in the NM are based on Peng and Robinson,8,9 who
properly considered effects of hydrocarbon types on BIPs for
the PR EOS. They recommended 0.1 for N2-paraffins and N2-
napthenes, 0.18 for N2-aromatics, and 0.1 for CO2-hydro-
carbons. Since pseudocomponents are mixtures of PNA
compounds, we use the average values in the NM, which is
[0.1 + 0.1 + 0.18]/3 = 0.12666 ≈ 0.13 for N2-
pseudocomponents, and 0.1 for CO2-pseudocomponents. The
NM uses 0.0 for N2−CO2, 0.1 for N2−Ci, where 1 ≤ i ≤ 6, 0.13
for N2-pseudocomponents, and 0.1 for CO2-hydrocarbons.
In the following subsections, phase behavior predictions

based on the NM and CMwV are compared with the
pseudodata. Tables S1, S2, S3, and S4 (in the Supporting
Information) give the resulting fluid models for oil 3
(13.38°API) and oil 6 (24.25°API) using the NM and
CMwV. These models are used in many of the comparisons
presented below.

5.1. P−T Predictions. We first present the comparisons in
terms of P−T predictions. Heavy-oil/solvent mixtures often
exhibit three hydrocarbon-phases near the vapor pressures of
the solvent components. The three phases consist of the
gaseous (V), oleic (L1), and solvent-rich liquid (L2) phases
(e.g., Mohanty et al.;1 Polishuk et al.37). Figures 10 and 11
show the 2-phase and 3-phase envelopes for a mixture of 10%
oil 6 and 90% C2. The CMwV gives the V−L1 and V−L1−L2
regions that are much smaller than those predicted by the NM.
The NM predictions are in good agreement with the
pseudodata points. The NM predictions are more accurate
for lower temperatures. The three-phase envelope predicted by
the NM almost coincides with data.
The deviation of the CMwV predictions from the pseudodata

is more significant for a mixture of 10% oil 6 and 90% C3.
Figure 12 shows that the CMwV results in an erroneous two-
phase envelope for this mixture. The NM correctly generates
the phase behavior predictions. Figure 13 shows that the NM
predicts a three-phase envelope that is close to the data points.
The three-phase behavior predicted by the CMwV occurs in a

Figure 8. MMP calculated for Oil 6 with 100% methane at 333.15 K
using CMw/oV with different numbers of pseudocomponents. Eight
pure components (N2, CO2, C1, C2, C3, C4, C5, and C6) are used with
4, 8, 12, 16, 20, and 22 pseudocomponents. The variation of calculated
MMP becomes insignificant for more than 16 pseudocomponents.

Figure 9. MMP calculated for Oil 6 with 100% CO2 at 333.15 K using
CMw/oV with different numbers of pseudocomponents. Eight pure
components (N2, CO2, C1, C2, C3, C4, C5, and C6) are used with 4, 8,
12, 16, 20, and 22 pseudocomponents. The variation of calculated
MMP becomes insignificant for more than 16 pseudocomponents.
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much smaller P−T region apart from the correct three-phase
region based on the pseudodata and the NM.

The accuracy of the NM for L1−L2−V phase behavior is
remarkable considering that the complex phase behavior
characteristic of highly asymmetric hydrocarbon mixtures is
predicted using only four pseudocomponents for the C7+
fraction. The reduced dimensionality in composition space
does not damage phase behavior predictions using the NM.

5.2. P−x Predictions. A P−x prediction presents a cross
section of isothermal phase behavior between two composi-
tions. This subsection shows P−x predictions for the oil-6/C1,
oil-6/C2, and oil-6/CO2 pairs at the oil-6 reservoir temperature
333.15 K. Figure 14 shows the P−x predictions along with

pseudodata for the oil-6/C1 pair. The NM and CMwV are
accurate at low mixing ratios of C1. This is because the 11-
component models are fitted to PSAT at the reservoir
temperature at the oil composition. As the mixture composition
goes away from the oil composition, the CMwV predictions
deviate from the pseudodata. The NM accurately predicts the
bubble-point pressures along the mixing line.
The advantage of the NM over the CMwV becomes more

significant for P−x predictions for the oil-6/C2 pair as shown in
Figure 15. At the C2 mixing ratio of 90%, the CMwV predicts a
bubble point at 137.44 bar, which is approximately 39 bar lower
than the pseudodata and the prediction by the NM.

Figure 10. Two-phase P−T diagrams for a mixture of oil 6 10% and C2
90% based on the new characterization method (NM) and the
conventional characterization method with volume-shift parameters
(CMwV). The 11-component models for oil 6 are given in Tables S3
and S4 in the Supporting Information. The pseudodata are generated
using the conventional method without using volume shift parameters
(CMw/oV) with 30 components.

Figure 11. Three-phase P−T diagrams for a mixture of oil 6 10% and
C2 90% based on the NM and the CMwV. The 11-component models
for oil 6 are given in Tables S3 and S4 in the Supporting Information.
The pseudodata are generated using the CMw/oV with 30 components.

Figure 12. Two-phase P−T diagrams for a mixture of oil 6 10% and C3
90% based on the NM and the CMwV. The 11-component models for
oil 6 are given in Tables S3 and S4 in the Supporting Information. The
pseudodata are generated using the CMw/oV with 30 components.

Figure 13. Three-phase P−T diagrams for a mixture of oil 6 10% and
C3 90% based on the NM and the CMwV. The 11-component models
for oil 6 are given in Tables S3 and S4 in the Supporting Information.
The pseudodata are generated using the CMw/oV with 30 components.

Figure 14. P−x diagrams for the oil-6/C1 pseudobinary pair at 333.15
K based on the NM and CMwV with 11 components. The 11-
component models are given in Tables S3 and S4 in the Supporting
Information. The pseudodata are generated using the CMw/oV with 30
components.
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Mixtures of CO2 and reservoir oil often exhibit continuous
transition between L1−V and L1−L2 phase equilibria (Okuno et
al.72) at low temperatures. Figure 16 presents such phase

behavior for oil 6 and CO2 at 333.15 K. The NM accurately
predicts the upper boundary of the two-phase region in P−x
space. The CMwV erroneously gives a smaller region for the
immiscible two liquid phases.
Figure 17 shows saturated liquid densities predicted along

the mixing line between oil 6 and the equimolar C1−C2 mixture
at 333.15 K. The density at the oil composition was used to
create the EOS fluid models. Therefore, the CMwV and NM are
both accurate at lower mixing ratios of the solvent. As the
mixture composition goes away from the oil composition,
however, the CMwV predictions deviate from the NM
predictions and the pseudodata. The results indicate that the
fluid models based on the CMwV cannot accurately represent
phase equilibrium and volumetric properties at compositions
away from the oil composition.
5.3. T−x Predictions. A T−x diagram presents another

important cross section of phase behavior, particularly when
coinjection of solvent and steam is considered for heavy-oil
recovery. Figure 18 shows T−x predictions for oil-3/C6

mixtures at 34.47 bar. The CMwV overpredicts saturation
temperatures except for low C6 mixing ratios, while the NM
accurately predicts them along the mixing line. If the fluid
model based on the CMwV is used in reservoir simulation of
solvent/steam coinjection, propagation of the solvent in the
reservoir can be significantly underestimated, resulting in
erroneous reservoir performance forecasts.
The overprediction of saturation temperatures by the CMwV

becomes more significant for higher pressures. Figure 19 shows
T−x predictions at 60.00 bar. The NM still predicts accurately
the saturation temperatures at all mixing ratios tested. However,
the CMwV predicts much higher saturation temperatures even
at low C6 mixing ratios. The deviation at the C6 mixing ratio of
0.3 is 139 K. At C6 mixing ratios higher than 0.3, there are no
saturation temperatures predicted by CMwV because the
cricondenbar becomes lower than 60.00 bar as can be seen in
Figure 20.

5.4. Thermodynamic Minimum Miscibility Pressure
(MMP) Calculation. The thermodynamic MMP is the
minimum displacement pressure at which complete miscibility
is developed along the composition path from the injectant to
the reservoir oil for one-dimensional flow in the absence of
dispersion.73 The thermodynamic MMP is a widely used
parameter for design of solvent injection. In this subsection, the

Figure 15. P−x diagrams for the oil-6/C2 pseudobinary pair at 333.15
K based on the NM and CMwV with 11 components. The 11-
component models are given in Tables S3 and S4 in the Supporting
Information. The pseudodata are generated using the CMw/oV with 30
components.

Figure 16. P−x diagrams for the oil-6/CO2 pseudobinary pair at
333.15 K based on the NM and CMwV with 11 components. The 11-
component models are given in Tables S3 and S4 in the Supporting
Information. The pseudodata are generated using the CMw/oV with 30
components.

Figure 17. Saturated liquid densities for mixtures of oil 6 and the
equimolar C1−C2 mixture at 333.15 K. The 11-component models
based on the NM and the CMwV are given in Tables S3 and S4 in the
Supporting Information, respectively. The pseudodata are generated
using the CMw/oV with 30 components.

Figure 18. T−x diagrams for the oil-3/C6 pseudobinary pair at 34.47
bar. The 11-component models based on the NM and the CMwV are
given in Tables S1 and S2 in the Supporting Information, respectively.
The pseudodata are generated using the CMw/oV with 30 components.
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thermodynamic MMPs are calculated for 18 oils in Table 1 at
their reservoir temperatures. Two different injectants are
considered: pure C1 and pure CO2. For the C1 cases, the
MMP calculations are performed based on the method of
characteristics using PVTsim. For the CO2 cases, the mixing-
cell method within PennPVT74,75 is used. MMP calculations are
not shown for oils 1, 2, 4, and 18 because three phases are
present during the MMP calculations using the EOS fluid
models for these oils based on the CMw/oV with 30
components.
Figure 21 compares the MMPs based on the NM with the

pseudodata for 18 oils with C1. Although the C1-MMPs
presented are calculated at different temperatures, the plots
show that the calculated C1-MMPs are higher for heavier oils.
The accuracy of the MMPs observed for the wide variety of oils
indicates that the NM successfully retains compositional phase
behavior using only four pseudocomponents for the C7+
fraction. Figure 22 shows that the C1-MMPs predicted based
on the CMwV are lower than the pseudodata. The deviation is
more significant for heavier oils. The maximum deviation of the
C1-MMPs is 5.3% for the NM, but it is 34% for the CMwV.
Figures 23 and 24 show the comparisons of the NM with the
CMwV in terms of the CO2-MMP. The maximum deviations of
the CO2-MMPs are 6.1% and 62% for the NM and the CMwV,
respectively.

Figures 22 and 24 indicate that compositional phase behavior
predictions are more erroneous for heavier oils using the
CMwV. This is because the CMwV uses density corrections
through volume shift parameters. A larger amount of volume
correction is required and performed for heavier oils in the
CMwV as shown in Tables S2 and S4 in the Supporting
Information (see also the Issues of the Conventional Method
subsection). However, the thermodynamic MMP considered
here is a parameter representing primarily compositional phase
behavior, instead of volumetric phase behavior, of the fluid
system considered. Therefore, the separation of volumetric
from compositional phase behavior predictions causes errors in
MMP predictions.

5.5. 1-D Displacement Simulation Case Study. Solvent
injection for heavy-oil recovery is typically conducted under
partially miscible conditions. In such displacements, the oil
recovery history depends on how components propagate with
the throughput of injectant. Fluid characterization can
significantly affect oil recovery predictions because interaction

Figure 19. T−x diagrams for the oil-3/C6 pseudobinary pair at 60.00
bar. The 11-component models based on the NM and the CMwV are
given in Tables S1 and S2 in the Supporting Information, respectively.
The pseudodata are generated using the CMw/oV with 30 components.

Figure 20. Two-phase P−T diagrams for mixtures of oil 3 and C6 at
four different C6 mixing ratios, 0.1, 0.3, and 0.4. At the C6 mixing ratio
of 0.4, there is no two-phase region at 60.0 bar, which can be also seen
in Figure 17

Figure 21. Comparison of MMP calculations for 22 oils in Table 1
based on the NM with 11 components and the CMw/oV with 30
components. The injection gas is pure methane. The MMPs for 18 oils
are calculated at their own reservoir temperatures, which are different
from one another. The two trend lines for the NM with 11
components and the CMw/oV with 30 components almost overlap
each other.

Figure 22. Comparison of MMP calculations for 22 oils in Table 1
based on the CMwV with 11 components and the CMw/oV with 30
components. The injection gas is pure methane. The MMPs for 18 oils
are calculated at their own reservoir temperatures, which are different
from one another. The two trend lines for the CMwV with 11
components and the CMw/oV with 30 components deviate from each
other as the API gravity becomes smaller.
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of phase behavior and fluid flow determines components’
propagation in a reservoir. This simulation case study aims to
compare predictions of components’ propagation using the NM
and CM.
We present 1-D isothermal displacement of oil 6 with the

equimolar C1/C2 mixture under partially miscible conditions.
The MMP calculated for this case is 412.23 bar using the
CMw/oV with 30 components. Using 11 components, it is
413.34 bar and 327.23 bar based on the NM and the CMwV,
respectively (see Tables S3 and S4 in the Supporting
Information for the fluid models). Input data for the
simulations using the GEM simulator of Computer Modeling
Group76 are given in Table 2. Figures 25 and 26 present
predictions of density and viscosity using the NM, CMwV, and
CMw/oV, along with experimental data. Viscosity was matched
using PVTsim by adjusting only VC of pseudocomponents
using the LBC method.44 The injection and production
pressures are fixed at 203.45 bar and 200 bar, respectively.
The small pressure difference is used to make pressure variation
in the reservoir small. Simulation results based on the CMw/oV

with 30 components are used as pseudodata. Simulation results
based on the NM and CMwV are then compared.
Figure 27 shows oil recovery predictions compared to the

pseudodata. The recovery curves for 0.0−0.3 hydrocarbon
pore-volumes injected (HCPVI) are not shown because they
nearly coincide. Oil recovery based on the NM is almost
identical to the pseudodata. However, the CMwV results in oil
recovery simulation that is significantly overpredicted by
approximately 8%. The overprediction is consistent with
other comparisons made in previous subsections, where the

Figure 23. Comparison of MMP calculations for 18 oils in Table 1
based on the NM with 11 components and the CMw/oV with 30
components. The injection gas is pure CO2. The MMPs for 18 oils are
calculated at their own reservoir temperatures, which are different from
one another. The two trend lines for the NM with 11 components and
the CMw/oV with 30 components are close to each other.

Figure 24. Comparison of MMP calculations for 18 oils in Table 1
based on the CMwV with 11 components and the CMw/oV with 30
components. The injection gas is pure CO2. The MMPs for 18 oils are
calculated at their own reservoir temperatures, which are different from
one another. The two trend lines for the CMwV with 11 components
and the CMw/oV with 30 components deviate from each other as the
API gravity becomes smaller.

Table 2. Input Parameters Used in the 1-D Simulation Case
Study

no. of gridblocks 250 reservoir
pressure

200 bar

grid dimensions 3.05 m × 3.05 m
× 1.52 m

reservoir temp. 333.15 K

permeability 1500 mD production
pressure

200 bar

porosity 0.15 injection
pressure

203.45 bar

initial oil
saturation

0.8

initial water
saturation

0.2 injection gas CH4:C2H6
(50:50)

Figure 25. Measured and calculated densities for oil 6 at 333.15 K.
Adjustment of pseudocomponents’ TC, PC, and ω is performed for the
NM with 11 components, and the CMw/oV with 30 components. The
CMwV with 11 components adjusts only volume shift parameters of
pseudocomponents to match densities.

Figure 26. Measured and calculated viscosities for oil 6 at 333.15 K.
Adjustment of VC was performed for pseudocomponents to match
viscosities using the LBC method for the NM and CMwV with 11
components, and the CMw/oV with 30 components.
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fluid models based on the CMwV exhibit more miscibility in
their phase diagrams and MMP calculations. To see the effect
of numerical dispersion on oil recovery simulation, the number
of gridblocks is decreased from 250 to 50. Figure 27 shows the
same advantage of the NM over the CMwV under more
dispersive conditions (The previous subsection showed
comparisons for the dispersion-free case). The number of
gridblocks is fixed to be 250 for further comparisons.
The different oil recovery histories are predicted because the

NM and CMwV predict different saturation profiles as shown in
Figure 28. Figure 29 shows that the C1 fronts based on the NM

and CMwV deviate from each other, resulting in different
predictions of gas breakthrough as can be seen in Figure 27.
Figure 28 also indicates the CMwV erroneously predicts faster
propagation of heavy components. Since the deviation of the
CMwV shown in Figure 28 increases with the injectant
throughput, the simulation based on the CMwV becomes
more erroneous at later times.

6. CONCLUSIONS
We developed a new method for fluid characterization using
the PR EOS with the van der Waals mixing rules. The method
characterizes reservoir fluids using perturbations of TC, PC, and
ω from n-alkane values. TC, PC, and ω for n-alkanes used are
based on our previous research, which are optimized for the PR
EOS for predictions of vapor pressures and liquid densities
without volume shift. The optimized reference values allow for
robust regression using three perturbation factors f T, f P, and fm
for TC, PC, and ω, respectively. In our regression, Pitzer’s
definition of ω is properly satisfied for each component. The
new characterization method was applied to 22 different
reservoir oils. Comparisons were made between the new and
conventional characterization methods in terms of predictions
of various phase diagrams, thermodynamic minimum miscibility
pressures (MMPs), and 1-D oil displacement. The conclusions
are as follows:

• The new method (NM) exhibits significant insensitivity
of phase behavior predictions to the number of
components used for a plus fraction. Two- and three-
phase behavior predictions in P-T-x space using the NM
with 11 components are almost identical to those using
the conventional method without volume shift
(CMw/oV) with 30 components.

• The reliability of the NM is also observed for MMP
calculations and 1-D oil displacement simulations. Oil
displacement predictions based on the NM with 11
components are nearly identical to those based on the
CMw/oV with 30 components. This is true even at
different dispersion levels tested. Results indicate that the
NM can reduce the dimensionality of composition space
while keeping accurate phase behavior predictions along
composition paths at different dispersion levels.

• The NM does not require volume shift parameters to
accurately predict compositional and volumetric phase
behaviors. The conventional method with volume shift
(CMwV) separates volumetric phase behavior predictions
from compositional phase behavior predictions. This
separation should be carefully used especially for heavy-
oil characterization. Our results show that the CMwV
with 11 components yields erroneous phase behavior
predictions, which typically show significantly smaller

Figure 27. Oil recovery predictions in 1-D oil displacement
simulations based on the NM and CMwV with 11 components,
along with pseudodata points generated from the CMw/oV with 30
components. Oil 6 is displaced by the equimolar C1/C2 mixture at
333.15 K at 200 bar, which is below MMP. Input parameters are given
in Table 2. The recovery curves for 0.0−0.3 HCPVI nearly coincide,
and they are not shown.

Figure 28. Oil saturation profiles at 0.4 HCPVI for the oil-6
displacement with the equimolar C1/C2 mixture at 333.15 K and 200
bar. Predictions using the NM and CMwV with 11 components are
shown along with pseudodata generated from the CMw/oV with 30
components.

Figure 29. Concentration profiles for C1 at 0.4 HCPVI for the oil-6
displacement with the equimolar C1/C2 mixture at 333.15 K and 200
bar. Predictions using the NM and CMwV with 11 components are
shown along with pseudodata generated from the CMw/oV with 30
components.
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two- and three-phase regions in P-T-x space. The
advantage of the NM over the CMwV in phase behavior
predictions is more significant for P-T-x conditions away
from those used for parameter regression.

• The new regression algorithm developed searches for an
optimum set of TC, PC, and ω for pseudocomponents
using physically justified search directions starting from
the well-defined initial values. Unlike in the CM, robust
convergence of TC, PC, and ω does not require stepwise
manual adjustments of parameters. The automatic
regression process in the NM took only a few minutes
per oil for the 22 oils characterized.

• The perturbation factors f T, f P, and fm developed in this
research are unity for n-alkanes. The perturbation factors
capture physical trends that can be derived from the
literature; for example, for a given molecular weight, TC
and PC are lower and ω is larger for paraffins compared
to other types of hydrocarbon compounds. For the 22
oils characterized in this research, the converged f T and
f P values are all greater than 1.0, and the converged fm
values are all smaller than 1.0. Deviations of f T, f P, and fm
from unity can be physically interpreted as deviations of
the plus fractions from n-alkane mixtures.

• The NM requires no changes in the current composi-
tional simulation formulation because it uses the PR EOS
with the van der Waals mixing rules.
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■ NOMENCLATURE

Roman Symbols
a = attraction parameter in a cubic equation of state
A = aromatic
Amix = attraction parameter for a mixture in a cubic equation
of state
b = covolume parameter in a cubic equation of state
Bmix = covolume parameter for a mixture in a cubic equation
of state
CPEN = Peneloux volume-shift parameter

m = parameter in the Peng−Robinson EOS (1978) defined
in eqs 2 and 3
D = dimension
fm = perturbation factor for the m parameter
f P = perturbation factor for critical pressure
f T = perturbation factor for critical temperature
Δfm = step size for fm
Δf P = step size for f P
Δf T = step size for f T
mA = m parameter for aromatics
k = number of density data
mP = m parameter for paraffins
n = number of pseudocomponents
N = napthenes
p = pressure, bar
P = paraffins
PC = critical pressure, bar
PCA = critical pressure of aromatics, bar
PCP = critical pressure of paraffins, bar
R = universal gas constant
T = temperature, K
TC = critical temperature, K
TCA = critical temperature of aromatics, K
TCP = critical temperature of paraffins, K
TOL = tolerance
υ = molar volume, gm/mol
VC = critical volume, gm/mol

Abbreviations
°API = API (American Petroleum Institute) gravity
BIP = binary interaction parameter
CM = conventional (characterization) method
CMwV = conventional (characterization) method using
volume shift
CMw/oV = conventional (characterization) method without
using volume shift
CN = carbon number
EOR = enhanced oil recovery
EOS = equation of state
HCPVI = hydrocarbon pore-volume injected
MMP = minimum miscibility pressure, bar
MW = molecular weight, gm/mol
NM = new (characterization) method
PC = pseudocomponent
PNA = paraffin−napthene−aromatic
PR = Peng−Robinson
P-T-x = pressure−temperature−composition
SRK = Soave−Redlich−Kwong

Greek Symbols
δ = average absolute deviation for density given by eq 9
ε = average absolute deviation for saturation pressure given
by eq 13
Ωa = constant term in the attraction parameter of a cubic
EOS
Ωb = constant term in the covolume parameter of a cubic
EOS
ψ = absolute % deviation given by eq 8
ω = acentric factor
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