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variety of composition conditions.  The wide operation range in P-T-x space provides technical challenges for the traditional 
use of cubic EOSs with the van der Waals mixing rules.   

Fluid characterization using an EOS is conducted based on experimental data available, which typically consist of 
composition analysis and pressure-volume-temperature (PVT) data.  However, it can be difficult to take reliable downhole 
fluid samples for heavy oil (Zabel et al. 2010; Memon et al. 2010).  Even when a reliable sample is available for a heavy oil, 
its detailed composition is uncertain because of high concentrations of non-identifiable compounds.  Availability of 
experimental data in P-T-x space, especially at different composition conditions, is often limited for heavy oil mainly because 
of its high viscosity and highly uncertain composition.  Heavy-oil PVT data that are easily measurable include saturation 
pressures (PSAT), densities, and viscosities at different conditions.  It is not unusual that they are the only reliable PVT data for 
a heavy oil.   

Characterization of conventional oils using an EOS has been developed, and implemented in commercial software 
(Whitson and Brulè 2000; Pedersen and Christensen 2007).  A typical characterization process consists of four main steps as 
follows: 
Step 1. Estimation of a molar distribution with respect to molecular weight (MW) or carbon number (CN) to split the plus 

fraction (e.g., C7+) into detailed components. 
Step 2. Estimation of properties for the detailed components such as critical temperature (TC), critical pressure (PC), critical 

volume (VC), acentric factor (ω), and volume-shift parameters. 
Step 3. Grouping of the detailed components into fewer pseudo components.  
Step 4. Regression of pseudo components’ properties to match experimental data available. 

In step 1, a distribution function is fitted to the composition analysis data available.  Forms of distribution functions 
proposed in the literature include the gamma (Whitson 1983), chi-square (Quiñones-Cisneros et al. 2003), and logarithmic 
distributions (Pedersen et al. 1983, 1984).  The gamma distribution is the most general form among the three, and reduces to 
the other two when certain assumptions are used.  The logarithmic distribution is a widely used form for conventional oil 
characterization, where composition analysis can provide composition information for a large fraction of the fluid.  Heavy oils 
often require more flexible distribution functions, like the gamma and chi-square ones, to match their composition analysis 
data (Ghasemi et al. 2011).  Regardless of the type of the distribution function used, however, the reliability of the resulting 
molar distribution depends primarily on how much uncertainty is left as a plus fraction in composition analysis.   

Step 2 uses correlations to estimate properties of the split components because critical properties measured for 
hydrocarbons heavier than C24 are not available (Ambrose and Tsonopoulos 1995).  These correlations include Edmister 
(1958), Cavett (1962), Lee and Kesler (1975), Kesler and Lee (1976), Twu (1984), Riazi and Daubert (1980, 1987), Riazi and 
Al-Sahaff (1966), and Korsten (2000).  The correlations of Pedersen et al. (1989, 1992, 2004) are functions of MW and density 
at atmospheric conditions, which are in turn functions of CN.  These correlations are developed for an EOS to reproduce vapor 
pressures and the critical point for the pseudo component of a given CN.  However, the PR and SRK EOSs with these 
correlations cannot accurately model densities of heavy hydrocarbons unless volume-shift parameters (Peneloux et al. 1982; 
Jhaveri and Youngren 1988) are used.  Krejbjerg and Pedersen (2006) developed new correlations for TC, PC, and ω for heavy-
oil characterization.  Their correlations do not attempt to model three-hydrocarbon-phase behavior, although such phase 
behavior often occurs for highly asymmetric mixtures of heavy oil with solvent (Polishuk et al. 2004).   

Step 3 reduces the number of components used in the fluid model and calculates properties of each pseudo component by 
averaging over its member components.  Use of fewer components can make EOS calculations more efficient, but it can also 
result in erroneous predictions of phase behavior due to reduced dimensionality in composition space.  Grouping procedures in 
the literature include the ones of Pedersen et al. (1984) and Whitson and Brulè (2000).  The former uses the equal mass 
grouping with mass-weighted averaging of properties, while the latter uses the equal mole grouping with mole-weighted 
averaging.  As mentioned before, simulation of solvent methods for heavy-oil recovery requires reliable representation of 
phase behavior at a wide range of composition conditions.  Therefore, a reliable fluid model for solvent/heavy-oil mixtures 
often requires more components than that for solvent/conventional-oil mixtures.   

Step 4 is often needed because each of steps 1-3 makes certain assumptions resulting in deviations of predictions from 
actual phase behavior.  Regression procedures for conventional oil characterization are discussed in detail in Whitson and 
Brulè (2000) and Pedersen and Christensen (2007).  Typical parameters adjusted in this step include TC, PC, ω, volume-shift 
parameters, and binary interaction parameters (BIPs) for pseudo components.  The constant terms of the attraction and 
covolume parameters of a cubic EOS, Ω	and	Ω, are sometimes adjusted, but this is not recommended as explained by Wang 
and Pope (2001).  These adjustment parameters offer flexibility that may be required to match various types of PVT data such 
as PSAT, constant mass expansion, constant volume depletion, differential liberation, separator tests, swelling tests, minimum 
miscibility pressures, and viscosity data.  Different EOS fluid models can result depending on which parameters are adjusted 
and how much they are adjusted (Lolley and Richardson, 1997).   

As described above, each of steps 1-4 is more difficult for heavy oil than for conventional oil.  The main reason for the 
difficulties is that heavy-oil characterization is conducted under high uncertainties in oil composition, components’ properties 
(e.g., TC, PC, and ω), and phase behavior in P-T-x space.  Also, considering direct use of EOS fluid models in compositional 
simulation, it is undesirable that modeling heavy-oil/solvent mixtures often requires many components to accurately model 
their phase behavior. 
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In this research, a new characterization method is developed for simulation of enhanced heavy-oil recovery.  We address 
the uncertainty issues discussed above by incorporating physical observations into our procedures for critical parameter 
estimation, step 2, and regression, step 4.  Since density data are easier to obtain than composition data, especially for heavy 
oil, our method effectively uses density data to improve phase behavior predictions in P-T-x space; i.e., volume-shift 
parameters are not required in our characterization method.  In the following section, the conventional characterization method 
used in this research is defined.  We then present a new characterization method and its application to 22 different reservoir 
oils.  Comparisons are made between the new and conventional characterization methods in terms of phase behavior 
predictions in P-T-x space for actual reservoir oils and their mixtures with solvents.   
 
Conventional Characterization Method Used in This Research 
The conventional characterization method used in this research is based on Pedersen and Christensen (2007) and the PVTsim 
software of Calsep (2011).  Descriptions are given below for the conventional characterization steps 1-4 (see the introduction 
section for the definitions of the steps).  All characterizations in this research assume that PVT data available are the oil PSAT at 
the reservoir temperature, and liquid densities and viscosities at different pressures at the reservoir temperature.  All EOS 
calculations in this research use the PR EOS, Eq. 1, with the van der Waals mixing rules. 

 p ൌ ୖ
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Step 1 of the conventional method assumes a logarithmic distribution for splitting a plus fraction.  In step 2, critical 
properties, such as TC, PC, and ω, are estimated using Krejbjerg and Pedersen (2006).  Step 3 uses the equal mass grouping 
with mass-weighted averaging of properties.   

Although there is no well-defined regression scheme for step 4 due to its high flexibility in the conventional method, Fig. 
A.1 depicts the conventional regression scheme used in this research, which is based on Pedersen and Christensen (2007) and 
Christensen (1999).  Adjustments are made for TC, PC, and ω of pseudo components to match the PSAT at the reservoir 
temperature.  Adjustment parameters are selected based on their sensitivities to PSAT calculation (Voulgaris et al. 1991).  

After matching the PSAT, density data at different pressures at the reservoir temperature are matched.  We consider two 
options here; one is to adjust TC, PC, and ω, and the other to adjust volume-shift parameters (the CPEN parameters in the 
PVTsim software).  The second option is widely used in the literature.  In this paper, the conventional methods with the first 
option and with the second option are referred to as the CMw/oV and CMwV, respectively.  The CMw/oV and CMwV are 
collectively called the CM.  The CMwV will be compared with our new method (NM) developed in the next section, both with 
11 components.  The CMw/oV will be used with 30 components to generate pseudo data for the comparisons.  In the regression 
step, we confirm that TC and PC have physically correct trends with respect to MW; i.e., TC monotonically increases and PC 
monotonically decreases with increasing MW.  As will be discussed, the NM does not require confirming the trends because 
the physical trends are naturally satisfied.  

VC for pseudo components are also adjusted to match viscosity data using the Lohrenz-Bray-Clark (LBC) model (Lohrenz 
et al. 1964).  BIPs are not adjusted in this research.  These two notes also apply for the NM described below. 
 
New Characterization Method Based on Perturbation from n-Alkanes 
The new characterization method (NM) developed in this section addresses two major issues that the CM can pose when 
applied for heavy-oil characterization.  These issues, which are described below, come essentially from the fact that heavy-oil 
characterization must be conducted under high uncertainties in oil composition, components’ properties (e.g., TC, PC, and ω), 
and phase behavior in P-T-x space.  In the following subsections, we first describe the issues of the CM.  Our development of 
the NW is then presented in detail.   
 
Issues of the Conventional Method 
One of the two major issues is in step 2, estimation of pseudo components’ properties.  Conventional correlations for pseudo 
components’ properties in the literature are typically functions of two parameters; e.g., MW and specific gravity.  The 
fundamental reason for use of two types of parameters is that a CN group contains a wide variety of compounds.  One way to 
categorize hydrocarbon compounds is paraffins, naphthenes, and aromatics (PNA).  TC and PC of paraffins are in general lower 
than those of aromatics within a given CN group (Kumar and Okuno 2012).  The trend is the other way around for ω.  That is, 
one of the two parameters, specific gravity, is required to consider the effects of a PNA distribution within a CN group on 
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critical properties of the CN group.  However, specific gravities of pseudo components in a plus fraction are unknown.  They 
are then estimated using a function of CN in Pedersen and Christensen (2007).  In this way, a certain PNA distribution is 
implicitly assumed in the CM for property estimation, and the PNA distribution assumed is not well defined for users.   

The PNA distribution implicitly set is coupled with a shortcoming of cubic EOSs in the CM.  That is, even when TC, PC, 
and ω of a well-defined hydrocarbon (e.g., a n-alkane compound) are given, cubic EOSs are inaccurate in predicting its liquid 
densities unless a volume-shift parameter is used (Ting et al. 2003; Voutas et al. 2006, Yakoumis et al. 1997).  This 
shortcoming of cubic EOSs is more serious for heavier hydrocarbons (Kumar and Okuno 2012).  Regression in step 4 then 
attempts to decrease errors caused by the coupled problem mentioned above, where adjustments of TC, PC, and ω must be 
performed with little justification in a physical sense.   

Another major issue addressed in this research is the separation of volumetric and compositional behaviors using volume-
shift parameters in the CMwV.  For heavy oil, available experimental data are mostly volumetric ones, instead of 
compositional ones.  Volume-shift parameters are typically needed when the CM is used with a small number of components 
to match heavy-oil density data.  In such a case, compositional behavior predictions of the resulting fluid model depend 
significantly on how much one relies on volume-shift parameters to match density data.   

Thermodynamically, however, volumetric phase behavior, including densities, is a consequence of compositional phase 
behavior; i.e., compositional and volumetric phase behaviors should not be modeled separately.  Density data for a given fluid 
contain its composition information.  The CMwV does not effectively use density data to improve compositional phase 
behavior predictions.  Although composition analysis is often difficult for heavy oils, density data can supplement 
compositional data for heavy-oil characterization by minimizing use of volume-shift parameters.  Thus, our NM does not use 
volume-shift parameters, which can also reduce the number of adjustment parameters.   
 
Characterization Steps in the New Method 
The most important novelties of the NM lie in steps 2 and 4 as will be described below.  For steps 1 and 3, the NM is based on 
Quiñones-Cisneros et al. (2003, 2004ab, 2005); i.e., the chi-square distribution is used for step 1, and the equal mass grouping 
with mass-weighted averaging of properties is used for step 3.   

Step 2, estimation of TC, PC, and ω for pseudo components, in the NM is based on the correlations of Kumar and Okuno 
(2012).  The PR EOS with the correlations gives accurate predictions of liquid densities and vapor pressures for n-alkanes 
from C7 to C100 without using volume-shift parameters.  The NM considers a PNA distribution of a plus fraction as 
perturbation from a limiting distribution of 100% n-alkanes.  Considering the trends of TC, PC, and ω with respect to the PNA 
distribution, TC and PC of a pseudo component should be higher than the n-alkane values from the correlations of Kumar and 
Okuno (2012).  Similarly, ω of a pseudo component should be lower than the n-alkane values.  The amounts of perturbations 
in TC, PC, and ω from the n-alkane values are related to the concentration of components other than n-alkanes, especially 
aromatic components, in the plus fraction.  Step 2 of the NM combines the perturbation concept and the correlations of Kumar 
and Okuno (2012) as given in Eqs. 4, 5, and 6.  

ܶ ൌ 508.15  688.71expሺെ ଶ.ସଽଵଵ

	
ሻ        (4) 

ܲ ൌ 537.65 ቀ
ౌ
ቁ
ି.ଶଽ

െ 1.58        (5) 

݉ ൌ 0.51824  2.5847ሺf୫	MWሻ
ି൬

రయ.రఱళమ
ౣ	

൰
       (6) 

The m parameter in Eq. 6 is defined in Eqs. 2 and 3 as a one-to-one function of ω.  The perturbation factors for TC, PC, and m 
are expressed as fT, fP, and fm, respectively.  Equations 4-6 reduce to the correlations of Kumar and Okuno (2012) for n-
alkanes when the perturbation factors are 1.0.  As a pseudo component deviates from the n-alkane with the same MW, fT and 
fP increase, and fm decreases from the value of 1.0.   

Equations 4-6 also consider another physical trend that can be derived from the correlations of Riazi and Al-Sahhaf (1996) 
and Pan et al. (1997).  Using their correlations, the differences between aromatics and paraffins in terms of TC and PC decrease 
with increasing MW (Figs. 1 and 2).  In terms of m, the difference exhibits a maximum around MW of 500 gm/mol as shown 
in Fig. 3.  These curves indicate that the effects of non-alkane compounds on TC, PC, and m vary with MW.   

Figures 1-3 also show how TC, PC, and m in our Eqs. 4-6 deviate from their n-alkane values as the perturbation factors (fT, 
fP, and fm) change from unity.  Figures 1-3 present that Eqs. 4-6 qualitatively represent the physical trends mentioned above.  
Fig. 1 shows that the sensitivity of TC to fT in Eq. 4 exhibits a maximum around MW of 200 gm/mol, which is not observed 
from the correlations of Riazi and Al-Sahhaf (1996).  However, the behavior of TC with respect to fT in the MW range of 100-
200 gm/mol does not affect practical fluid characterization because most of pseudo components are out of this MW range, 
especially for heavy oils. 

Step 4 of the NM uses Eqs. 4-6 to regress TC, PC, and ݉ of pseudo components for matching PSAT and density data.  Figure 
A.2 presents the algorithm to adjust fT, fP, and fm.  There are three main iteration loops, the PSAT, density, and ω loops.  The 
PSAT loop is the innermost loop contained by the density loop.  The ω loop contains the other two loops. 

The initial values for fT and fP are 1.0.  The fm parameter is initialized by solving Eq. 7,  
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where MW1 is the MW of the lightest pseudo component in a fluid model.  The value on the left side of Eq. 7, i.e. 0.6, is lower 
than the ݉ for benzene, 0.6866 (see Eq. 2 with ω = 0.21).  Use of Eq. 7 assumes all pseudo components are heavier than C6.  
The value 0.6 can be unduly low if MW1 is much greater than the MW of benzene.  However, this value is recommended for 
robustness.  

In the PSAT loop, fP is adjusted by ∆fP (e.g., +10-6) per iteration to match the PSAT by decreasing the ψ function (Eq. 8).  
Once the ψ function becomes smaller than a tolerance (e.g., 10-4), the density loop decreases the δ function (Eq. 9) by 
adjusting fT and fP.  In the density loop, fP is set to 1.0 at the beginning of each iteration, and fT is adjusted by ∆fT (e.g., +10-5) 
per iteration.  If the fT exceeds 3.5 or the δ function at the current iteration is greater than that at the previous iteration, then the 
algorithm moves to the ω loop.  The fT value can be greater than the upper bound of 3.5 when MW1 is much greater than the 
MW of benzene in Eq. 7.   

						߰ ൌ ୟୠୱሺ୶୮ୣ୰୧୫ୣ୬୲ୟ୪	ఽ	ି	େୟ୪ୡ୳୪ୟ୲ୣୢ	ఽሻ∗ଵ
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ቃ
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The ω loop is to satisfy the internal consistency of TC, PC, and ω; i.e., the definition of ω given by Pitzer (1955) and Pitzer 
et al. (1955) and in Eq. 10.  Equations 11 and 12 are used to back calculate ω from the current m for each pseudo component.  
These ω values are then used in Eq. 10 to obtain saturation pressures for pseudo components (PSATI) at 0.7TC.   

ሺPୗሻୟ୲	౨ୀ. ൌ 10ିሺଵାሻPେ         (10) 

݉ ൌ 0.37464  1.54226	 െ 0.26992ଶ					for	  0.3984     (11) 

݉ ൌ 0.379642  1.48503	 െ 0.164423ଶ  0.016666ωଷ					for	  0.3984   (12) 

Use of the PR EOS with the current TC, PC, and ω yields another saturation pressure at 0.7TC (PSATII) for each pseudo 
component.  The average absolute deviation	ε	for PSATI and PSATII for all pseudo components is then calculated using Eq. 13 

ε ൌ ଵ


∑ AbsሺPୗ୍ െ Pୗ୍୍ሻ

ୀଵ ,         (13) 

where n is the number of pseudo components.  If fT is greater than 3.5 or the	ε	function at the current iteration is smaller than 
that at the previous iteration, fm is increased by ∆fm (e.g., +10-3) to continue on the ω loop.  For each ω iteration, fT and fP start 
with 1.0.  The final values for fT, fP, and fm are determined when the	ε	function becomes greater than that at the previous 
iteration.  The final set of fT, fP, and fm gives the first minimum of the	ε	function encountered in the calculation.  

In the regression algorithm, the initial value is 1.0 for fT and fP, corresponding to the n-alkane values in Kumar and Okuno 
(2012).  The search direction for fT and fP is the increasing direction from their initial values because pseudo components’ TC 
and PC should be higher than n-alkane’s value for a given MW.  So, ∆fT and ∆fP are positive to be physically justified.  We set 
a lower bound for fm in Eq. 7, which is used as the initial fm value.  So, ∆fm should also be positive.  If the converged fm is 
smaller 1.0, it is consistent with the ω perturbation concept that pseudo components’ ω should be lower than n-alkane’s value 
for a given MW.  

The regression algorithm in the NM provides a unique set of TC, PC, and ݉ unlike the CM, where the resulting TC, PC, and 
m depend on the selection of adjustment parameters and adjustment amounts for them.  Our regression algorithm can work 
with fewer adjustment parameters, compared to the CM, because of the physical observations incorporated in its development.   

Equations 11 and 12 are different from Eqs. 2 and 3 in terms of their  ranges.  Equations 2 and 3 give the same value 
for	݉ at  = 0.39839, but not at the boundary  = 0.49.  The value of 0.39839 falls in the  range 0.20-0.49 that is 
recommended for both Eqs. 2 and 3 by Peng and Robinson (1978).  Therefore, the value of 0.3984 is chosen as the boundary 
value for Eqs. 11 and 12.  

The NM developed in this section uses the PR EOS.  However, it can also be used with other cubic EOSs if a new set of 
critical parameters is developed for the selected cubic EOS as Kumar and Okuno (2012) did for the PR EOS.  The regression 
algorithm assumes that densities, viscosities, and PSAT data are the only available PVT data.  More adjustment parameters may 
be required when more PVT data are available, especially at different composition conditions.  The regression algorithm can 
be extended for such a case by using molar distribution parameters as variables and creating additional loops.  For example, 
the chi-square distribution has two parameters, which influence mole fractions and MWs of pseudo components.  These 
adjustment parameters will be effective especially for heavy oils, considering the importance of molar distributions of pseudo 
components in EOS calculations.  BIPs for pseudo-component/non-hydrocarbon (e.g., CO2) pairs can significantly affect phase 
behavior calculations.  So, BIPs can also be used as regression parameters.  However, we recommend that the regression step 
should minimize the number of adjustment parameters to avoid physically absurd adjustment of parameters. 
 



6  SPE 159494 

Characterization of Reservoir Oils Using the New Method 
In this section, the NM is applied to 22 different reservoir oils ranging from 9.5˚API to 60.18˚API.  The oils are actual 
reservoir oils, for which data are available in the literature as shown in Table 1.  The number of pseudo components is fixed to 
be four for the 22 oils.  Mole fractions and MWs of pseudo components for oils 1-13 and 18-20 are taken directly from the 
corresponding references, which are based on the chi-square distribution.  PSAT and reservoir temperature data are available in 
the references as numerical values for the 22 oils.  Many of the density data used have been obtained by digitizing density 
plots in the references.  The number of density data points used is given for each oil in Table 1.   

Figure 4 shows how the ε function varies with fm for oils 5, 6, and 9.  Step 4 of the NM converges to the final set of fT, fP, 
and fm (and corresponding TC, PC, and m) at a minimum ε value for each oil.  The same behavior of fm occurs for the other oils 
studied in this research.  

Table 1 lists the converged fT, fP, and fm values for the 22 oils studied.  Figures 5, 6, and 7 show the relationship between 
the API gravity and the converged fT, fP, and fm values, respectively.  For all the oils, the converged fT and fP values are greater 
than 1.0, and the converged fm values are smaller than 1.0.  These results indicate that the regression algorithm successfully 
found the solutions that are consistent with the perturbation concept described in the previous section. 

Figures 5-7 also show a trend that fT, fP, and fm are converging toward 1.0 as the API gravity becomes larger.  This is likely 
because the paraffinic portion of the PNA distribution for a lighter oil is greater than that for a heavier oil.  The PNA 
distribution of a heavy oil in general can deviate significantly from the reference distribution of 100% n-alkanes because a 
heavier CN group allows for a wider variety of compounds in it.   

Unlike manual adjustments performed in the CM, the regression process in the NM is automatic and takes only 1-3 
minutes per oil using our code written in FORTRAN on the Intel Core i7-960 processor at 3.20 GHz and 8.0 GB RAM.  The 
algorithm presented is based on the exhaustive search method of optimization for robustness.  More rapid convergence will be 
achieved if a gradient method is used with initial guesses for fT, fP, and fm based on the previous iteration steps.   

 
Comparisons Between the New and Conventional Methods 
We now make comparisons between the NM and CM in terms of various types of phase behavior predictions in P-T-x space 
for the oils in Table 1.  Since there is no data available in composition space for the oils listed in Table 1, pseudo data are 
created for the 22 oils using the CMw/oV with 30 components (see Fig. A.1 for the CMw/oV algorithm).  The 30 components 
consist of N2, CO2, C1, C2, C3, C4, C5, C6, and 22 pseudo components for the C7+ fraction.  BIPs between the hydrocarbon 
components are zero.  All other BIPs used for the 30-component models are default values in PVTsim as follows: -0.017 for 
N2-CO2, 0.0311 for N2-C1, 0.0515 for N2-C2, 0.0852 for N2-C3, 0.08 for N2-C4, 0.1 for N2-C5,  0.08 for N2-Ci, where i ≥ 6, 0.12 
for CO2,-Cj, where 1 ≤ j ≤ 6, and 0.1 for CO2-pseudo-components.  

Separately from the 30-component models created for pseudo data, two fluid models are created for each oil using the NM 
and CMwV with 11 components (see Figs. A.1 and A.2 for the CMwV and NM algorithms, respectively).  The 11 components 
consist of N2, CO2, C1, C2, C3, C4-5, C6, and 4 pseudo components for the C7+ fraction.  In this research, BIPs are not 
adjustment parameters, and fixed BIP values are used for the 22 oils.  BIPs are zero between the hydrocarbon components.  
The other BIPs used in the NM are 0.0 for N2-CO2, 0.1 for N2-Ci, where 1 ≤ i ≤ 6, 0.13 for N2-pseudo-components, and 0.1 for 
CO2-hydrocarbons. These values are based on Peng and Robinson (1978).  BIPs in the CMwV are default values in PVTsim, 
which are given above for the 30-component characterization.   

In the following subsections, phase behavior predictions based on the NM and CMwV are compared with the pseudo data.  
Tables 2, 3, 4, and 5 give the resulting fluid models for oil 3 (13.38˚API) and oil 6 (24.25˚API) using the NM and CMwV.  
These models are used in many of the comparisons presented below.   

P-T Predictions 
We first present the comparisons in terms of P-T predictions.  Heavy-oil/solvent mixtures often exhibit three hydrocarbon-
phases near the vapor pressures of the solvent components.  The three phases consist of the gaseous (V), oleic (L1), and 
solvent-rich liquid (L2) phases (e.g., Mohanty et al. 1995; Polishuk et al. 2004).  Figures 8 and 9 show the 2-phase and 3-
phase envelopes for a mixture of oil 6 10% and C2 90%.  The CMwV gives the V-L1 and V-L1-L2 regions that are much smaller 
than those predicted by the NM.  The NM predictions are in good agreement with the pseudo data points.  The NM predictions 
are more accurate for lower temperatures.  The three-phase envelope predicted by the NM almost coincides with data.   

The deviation of the CMwV predictions from the pseudo data is more significant for a mixture of oil 6 10% and C3 90%.  
Figure 10 shows that the CMwV results in an erroneous two-phase envelope for this mixture.  The NM correctly generates the 
phase behavior predictions.  Figure 11 shows that the NM predicts a three-phase envelope that is close to the data points.  The 
three-phase behavior predicted by the CMwV occurs in a much smaller P-T region apart from the correct three-phase region 
based on the pseudo data and the NM.   

The accuracy of the NM for L1-L2-V phase behavior is remarkable considering that the complex phase behavior 
characteristic of highly asymmetric hydrocarbon mixtures is predicted using only four pseudo components for the C7+ fraction.  
The reduced dimensionality in composition space does not damage phase behavior predictions using the NM.   
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P-x Predictions 
A P-x prediction presents a cross section of isothermal phase behavior between two compositions.  In this subsection, we show 
P-x predictions for the oil-6/C1, oil-6/C2, and oil-6/CO2 pairs at the oil-6 reservoir temperature 333.15 K.  Figure 12 shows the 
P-x predictions along with pseudo data for the oil-6/C1 pair.  The NM and CMwV are accurate at low mixing ratios of C1.  This 
is because the 11-component models are fitted to PSAT at the reservoir temperature at the oil composition.  As the mixture 
composition goes away from the oil composition, the CMwV predictions deviate from the pseudo data.  The NM accurately 
predicts the bubble-point pressures along the mixing line.   

The advantage of the NM over the CMwV becomes more significant for P-x predictions for the oil-6/C2 pair as shown in 
Fig. 13.  At the C2 mixing ratio of 90%, the CMwV predicts a bubble point at 137.44 bars, which is approximately 39 bars 
lower than the pseudo data and the prediction by the NM.     

Mixtures of CO2 and reservoir oil often exhibit continuous transition between L1-V and L1-L2 phase equilibria (Okuno et 
al. 2011) at low temperatures.  Figure 14 presents such phase behavior for oil 6 and CO2 at 333.15 K.  The NM accurately 
predicts the upper boundary of the two-phase region in P-x space.  The CMwV erroneously gives a smaller region for the 
immiscible two liquid phases.   

Figure 15 shows saturated liquid densities predicted along the mixing line between oil 6 and the equimolar C1-C2 mixture 
at 333.15 K.  The density at the oil composition was used to create the EOS fluid models, so the CMwV and NM are both 
accurate at lower mixing ratios of the solvent.  As the mixture composition goes away from the oil composition, however, the 
CMwV predictions deviate from the NM predictions and the pseudo data.  The results indicate that the fluid models based on 
the CMwV cannot accurately represent phase equilibria and volumetric properties at compositions away from the oil 
composition.   
 
T-x Predictions 
A T-x diagram presents another important cross section of phase behavior, particularly when coinjection of solvent and steam 
is considered for heavy-oil recovery.  Figure 16 shows T-x predictions for oil-3/C6 mixtures at 34.47 bars.  The CMwV 
overpredicts saturation temperatures except for low C6 mixing ratios, while the NM accurately predicts them along the mixing 
line.  If the fluid model based on the CMwV is used in reservoir simulation of solvent/steam coinjection, propagation of the 
solvent in the reservoir can be significantly underestimated, resulting in erroneous reservoir performance forecasts.   

The overprediction of saturation temperatures by the CMwV becomes more significant for higher pressures.  Figure 17 
shows T-x predictions at 60.00 bars.  The NM still predicts accurately the saturation temperatures at all mixing ratios tested.  
However, the CMwV predicts much higher saturation temperatures even at low C6 mixing ratios.  The deviation at the C6 
mixing ratio of 0.3 is 139 K.  At C6 mixing ratios higher than 0.3, there are no saturation temperatures predicted by CMwV 
because the cricondenbar becomes lower than 60.00 bars as can be seen in Fig. 18.   

 
Thermodynamic Minimum Miscibility Pressure (MMP) Calculation 
The thermodynamic MMP is the minimum displacement pressure at which complete miscibility is developed along the 
composition path from the injectant to the reservoir oil for one-dimensional flow in the absence of dispersion (Johns and Orr 
1996).  The thermodynamic MMP is a widely used parameter for design of solvent injection.  In this subsection, the 
thermodynamic MMPs are calculated for 18 oils in Table 1 at their reservoir temperatures.  Two different injectants are 
considered; pure C1 and pure CO2.  For the C1 cases, the MMP calculations are performed based on the method of 
characteristics using PVTsim.  For the CO2 cases, the mixing-cell method within PennPVT (Johns 2012; Ahmadi and Johns 
2011) is used.  MMP calculations are not shown for oils 1, 2, 4, and 18 because three phases are present during the MMP 
calculations using the EOS fluid models for these oils based on the CMw/oV with 30 components.   

Figure 19 compares the MMPs based on the NM with the pseudo data for 18 oils with C1.  Although the C1-MMPs 
presented are calculated at different temperatures, the plots show that the calculated C1-MMPs are higher for heavier oils.  The 
accuracy of the MMPs observed for the wide variety of oils indicates that the NM successfully retains compositional phase 
behavior using only four pseudo components for the C7+ fraction.  Figure 20 shows that the C1-MMPs predicted based on the 
CMwV are lower than the pseudo data.  The deviation is more significant for heavier oils.  The maximum deviation of the C1-
MMPs is 5.6% for the NM, but it is 34% for the CMwV.  Figures 21 and 22 show the comparisons of the NM with the CMwV 
in terms of the CO2-MMP.  The maximum deviations of the CO2-MMPs are 7.4% and 62% for the NM and the CMwV, 
respectively.   

Figures 20 and 22 indicate that compositional phase behavior predictions are more erroneous for heavier oils using the 
CMwV.  This is because the CMwV uses density corrections through volume-shift parameters.  A larger amount of volume 
correction is required and performed for heavier oils in the CMwV as shown in Tables 3 and 5 (see also the Issues of the 
Conventional Method subsection).  However, the thermodynamic MMP considered here is a parameter representing primarily 
compositional phase behavior, instead of volumetric phase behavior, of the fluid system considered.  Therefore, the separation 
of volumetric from compositional phase behavior predictions causes errors in MMP predictions.   
 

1-D Displacement Simulation Case Study 
Solvent injection for heavy-oil recovery is typically conducted under partially miscible conditions.  In such displacements, the 
oil recovery history depends on how components propagate with the throughput of injectant.  This subsection presents a 
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simulation case study for 1-D isothermal displacement of oil 6 with the equimolar C1/C2 mixture under partially miscible 
conditions.  The MMP calculated for this case is 412.23 bars using the CMw/oV with 30 components.  Using 11 components, it 
is 415.38 bars and 327.23 bars based on the NM and the CMwV, respectively (see Tables 4 and 5 for the fluid models).  Input 
data for the simulations using the GEM simulator of Computer Modelling Group (2011) are given in Table 6.  The injection 
and production pressures are fixed at 203.45 bars and 200 bars, respectively.  The small pressure difference is used to make 
pressure variation in the reservoir small.  Simulation results based on the CMw/oV with 30 components are used as pseudo data.  
Simulation results based on the NM and CMwV are then compared.   

Figure 23 shows oil recovery predictions compared to the pseudo data.  The recovery curves for 0.0-0.3 hydrocarbon pore-
volumes injected (HCPVI) are not shown because they nearly coincide.  Oil recovery based on the NM is almost identical to 
the pseudo data.  However, the CMwV results in oil recovery simulation that is significantly overpredicted by approximately 
8%.  The overprediction is consistent with other comparisons made in previous subsections, where the fluid models based on 
the CMwV exhibit more miscibility in their phase diagrams and MMP calculations.  To see the effect of numerical dispersion 
on oil recovery simulation, the number of gridblocks is decreased from 250 to 50.  Figure 23 shows the same advantage of the 
NM over the CMwV under more dispersive conditions (The previous subsection showed comparisons for the dispersion-free 
case).  So, the number of gridblocks is fixed to be 250 for further comparisons.   

The different oil recovery histories are predicted because the NM and CMwV predict different saturation profiles as shown 
in Fig. 24.  Figure 25 shows that the C1 fronts based on the NM and CMwV deviate from each other, resulting in different 
predictions of gas breakthrough as can be seen in Fig. 23.  Figure 24 also indicates the CMwV erroneously predicts faster 
propagation of heavy components.  Since the deviation of the CMwV shown in Fig. 24 increases with the injectant throughput, 
the simulation based on the CMwV becomes more erroneous at later times.   

 
Conclusions 
We developed a new method for fluid characterization using the PR EOS with the van der Waals mixing rules.  The method 
characterizes reservoir fluids using perturbations of TC, PC, and ω from n-alkane values.  TC, PC, and ω for n-alkanes used are 
based on our previous research, which are optimized for the PR EOS for predictions of vapor pressures and liquid densities 
without volume shift.  The optimized reference values allow for robust regression using three perturbation factors fT, fP, and fm 
for TC, PC, and ω, respectively.  In our regression, Pitzer’s definition of ω is correctly satisfied for each component.  The new 
characterization method was applied to 22 different reservoir oils.  Comparisons were made between the new and conventional 
characterization methods in terms of predictions of various phase diagrams, thermodynamic minimum miscibility pressures 
(MMPs), and 1-D oil displacement.  The conclusions are as follows:  
1. The new method (NM) exhibits significant insensitivity of phase behavior predictions to the number of components used 

for a plus fraction.  Two- and three-phase behavior predictions in P-T-x space using the NM with 11 components are 
almost identical to those using the conventional method without volume shift (CMw/oV) with 30 components.   

2. The reliability of the NM is also observed for MMP calculations and 1-D oil displacement simulations.  Oil displacement 
predictions based on the NM with 11 components are nearly identical to those based on the CMw/oV with 30 components.  
This is true even at different dispersion levels tested.  Results indicate that the NM can reduce dimensionality of 
composition space while keeping accurate phase behavior predictions along composition paths at different dispersion 
levels.   

3. The NM does not require volume-shift parameters to accurately predict compositional and volumetric phase behaviors.  
The conventional method with volume shift (CMwV) separates volumetric phase behavior predictions from compositional 
phase behavior predictions.  This separation should be carefully used especially for heavy-oil characterization.  Our results 
show that the CMwV with 11 components yields erroneous phase behavior predictions, which typically show significantly 
smaller two- and three-phase regions in P-T-x space.  The advantage of the NM over the CMwV in phase behavior 
predictions is more significant for P-T-x conditions away from those used for parameter regression. 

4. The new regression algorithm developed searches for an optimum set of TC, PC, and ω for pseudo components using 
physically justified search directions starting from the well-defined initial values.  Unlike in the CM, convergence of TC, 
PC, and ω does not depend on user’s experience in thermodynamic modeling.  The automatic regression process in the 
NM took only a few minutes per oil for the 22 oils characterized. 

5. The perturbation factors fT, fP, and fm developed in this research are unity for n-alkanes.  The perturbation factors capture 
physical trends that can be derived from the literature; e.g., for a given molecular weight, TC and PC are lower and ω is 
larger for paraffins compared to other types of hydrocarbon compounds.  For the 22 oils characterized in this research, the 
converged fT and fP values are all greater than 1.0, and the converged fm values are all smaller than 1.0.  Deviations of fT, 
fP, and fm from unity can be physically interpreted as deviations of the plus fractions from n-alkane mixtures.  

6. The NM requires no changes in the current compositional simulation formulation because it uses the PR EOS with the van 
der Waals mixing rules.   
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Nomenclature 

Roman Symbols 
A = Attraction parameter in a cubic equation of state 
A = Aromatic 
Amix = Attraction parameter for a mixture in a cubic equation of state 
b = Covolume parameter in a cubic equation of state 
Bmix = Covoulme parameter for a mixture in a cubic equation of state 
CPEN = Peneloux volume-shift parameter 
m = Parameter in the Peng–Robinson EOS (1978) defined in Eqs. 2 and 3 
D = Dimension 
fm = Perturbation factor for the m parameter  
fP = Perturbation factor for critical pressure 
fT = Perturbation factor for critical temperature 
∆fm = Step size for fm 
∆fP = Step size for fP 
∆fT = Step size for fT 
mA = Acentric factor for aromatics 
k = Number of density data 
mP = Acentric factor for paraffins 
n = Number of pseudo components 
N = Napthenes 
p = Pressure, bar 
P = Paraffins 
PC = Critical pressure, bar 
PCA = Critical pressure of aromatics, bar 
PCP = Critical pressure of paraffins, bar 
R = Universal gas constant 
T = Temperature, K 
TC = Critical temperature, K 
TCA = Critical temperature of aromatics, K 
TCP = Critical temperature of paraffins, K 
TOL = Tolerance 
 Molar volume, gm/mol = ݒ
VC = Critical volume, gm/mol 

 
 
 
 

 
Greek symbols 
 Average absolute deviation for density given by Eq. 9 = ߜ
 Average absolute deviation for saturation pressure given by Eq. 13 = ߝ

Abbreviations 
oAPI = API (American Petroleum Institute) gravity 
BIP = Binary interaction parameter 
CM = Conventional (characterization) method
CMwV = Conventional (characterization) method using volume shift  
CMw/oV = Conventional (characterization) method without using volume shift 
CN = Carbon number 
EOR = Enhanced oil recovery 
EOS = Equation of state 
HCPVI = Hydrocarbon pore-volume injected
MMP = Minimum miscibility pressure, bar 
MW = Molecular weight, gm/mol 
NM = New (characterization) method 
PC = Pseudo component 
PNA = Paraffin-napthene-aromatic 
PR  = Peng-Robinson 
P-T-x = Pressure-temperature-composition 
SRK = Soave-Redlich-Kwong 
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Ω  = Constant term in the attraction parameter of a cubic EOS 
Ω  = Constant term in the covolume parameter of a cubic EOS 
߰ = Absolute % deviation given by Eq. 8 
ω = Acentric factor 
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Table 1. Twenty two reservoir oils characterized in this research and converged fT, fP, and fm values using the 
new characterization method 

Oil 
No. 

References 
MW 
(gm/mol) 

oAPI  Reservoir 
Temperature 

(K) 

No. of 
Density Data 
(k in Eq. 9) 

f f fm 

1 Quiñones-Cisneros et al. (2005), Oil-8 443.08   9.50 322.05 13 2.17147 1.73400 0.359 
2 Quiñones-Cisneros et al. (2005), Oil-7 431.59 11.63 322.05 12 1.75256 1.64495 0.368 
3 Quiñones-Cisneros et al. (2004a), Oil-6 377.88 13.38 322.05 13 2.97104 1.82457 0.246 
4 Quiñones-Cisneros et al. (2004a), Oil-5 422.94 11.98 322.05 13 1.86036 1.65916 0.379 
5 Quiñones-Cisneros et al. (2004a), Oil-1 170.59 20.81 330.40 16 3.02971 1.78694 0.406 
6 Quiñones-Cisneros et al. (2004b), Oil-8 182.05 24.25 333.15 16 2.93681 1.91583 0.429 
7 Quiñones-Cisneros et al. (2004b), Oil-7 159.99 29.24 330.40 16 2.38392 1.74502 0.440 
8 Quiñones-Cisneros et al. (2004b), Oil-6 118.18 35.61 346.15   5 2.13263 1.71679 0.434 
9 Quiñones-Cisneros et al. (2004b), Oil-5 130.55 28.30 337.85   3 2.99111 1.85084 0.453 
10 Quiñones-Cisneros et al. (2004b), Oil-4 114.57 33.35 337.85   6 2.53622 1.74607 0.493 
11 Quiñones-Cisneros et al. (2004b), Oil-3   87.80 40.46 337.25   5 2.42193 1.65192 0.554 
12 Quiñones-Cisneros et al. (2004b), Oil-2   89.83 47.63 366.45 11 2.15660 1.47331 0.540 
13 Quiñones-Cisneros et al. (2004b), Oil-1   86.57 60.18 427.60 13 1.43504 1.18242 0.642 
14 Oil* 296.90 22.60ǂ 357.50 13 2.31403 1.62078 0.309 
15 Coats and Smart (1986), Oil-1 123.79 34.04 355.37   8 2.71743 1.85304 0.402 
16 Coats and Smart (1986), Oil-6   83.31 55.73 385.37 20 2.14293 1.45227 0.453 
17 Coats and Smart (1986), Oil-7 113.60 47.09 328.15 20 1.97029 1.46148 0.499 
18 Quiñones-Cisneros et al. (2003), Oil-5 240.24 20.19 345.93 15 1.57415 1.56712 0.585 
19 Quiñones-Cisneros et al. (2003), Oil-4 167.03 25.70 344.95 11 2.15396 1.67997 0.588 
20 Quiñones-Cisneros et al. (2003), Oil-3 114.65 34.24 337.85 12 2.08488 1.60514 0.616 
21 Cullick et al. (1992), Light Oil 105.28 43.68 377.59   8 2.11704 1.56141 0.414 
22 Pedersen et a. (1992), Fluid-1 124.57 35.73 344.75   8 1.91030 1.54935 0.615 
* This is an actual oil, but the source is not mentioned for confidentiality. 
ǂAs reported.  All other densities are calculated values. 

 
 

Table 2. Fluid model for oil 3 developed using the new characterization 
method with 11 components. 
Components Mole 

Fractions 
MW 

(gm/mol) 
TC      
(K) 

PC  
(bars) 

VC 
(cc/mol) 

ω 

N2 0.0004     28.02   126.20 33.90      89.80 0.0400 
CO2 0.0216     44.01   304.20 73.80      94.00 0.2250 
C1 0.1992     16.04   190.60 46.00      99.00 0.0080 
C2 0.0011     30.07    305.40 48.84    148.00   0.0980 
C3 0.0002     44.10   369.80 42.46    203.00   0.1520 
C4-5 0.0010     67.94   453.70 35.12    283.50 0.2357 
C6 0.0021     86.18   508.00 30.31    370.00 0.3005 
PC1 0.3389   275.45 1003.02 21.25    805.80 0.2133 
PC2 0.2015   463.51 1074.04 14.88  1951.96 0.3962 
PC3 0.1430   652.65 1107.19 11.68  3834.48 0.5671 
PC4 0.0910 1025.86 1138.37   8.40  7984.38 0.8356 
Temperature (K) 322.05     
Saturation Pressure (bars) 47.23     

 

Table 3. Fluid model for oil 3 developed using the conventional characterization 
method with volume shift with 11 components. 
Components Mole 

Fractions 
MW 

(gm/mol) 
TC       
(K) 

PC  
(bars) 

VC 
(cc/mol) 

ω CPEN 

(cc/mol) 
N2 0.0004     28.02   126.20 33.90     89.80 0.0400             -4.23 
CO2 0.0216     44.01   304.20 73.80     94.00 0.2250             -1.64 
C1 0.1992     16.04   190.60 46.00     99.00 0.0080             -5.20 
C2 0.0011     30.07    305.40 48.84   148.00    0.0980          -5.79 
C3 0.0002     44.10   369.80 42.46   203.00    0.1520         -6.35 
C4-5 0.0010     67.94   453.70 35.12   283.50 0.2355             -5.53 
C6 0.0021     86.18   508.00 30.31   370.00 0.3004              1.39 
PC1 0.4294   226.26 702.850 21.56 1212.59    0.3701           -96.76 
PC2 0.1744   532.79 803.872 17.25 2357.30    0.4100         -405.20 
PC3 0.1072   853.44 860.001 15.76 3754.90    0.4257         -753.83 
PC4 0.0632 1450.93 841.495 14.80 6744.42    0.4330       -1458.94 
Temperature (K) 322.05      
Saturation Pressure (bars) 47.23      
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Appendix-A 
 

 

Figure A.1. Flow chart for the conventional characterization method (CM) in this research, which is based on Pedersen and 
Christensen (2007).  The shaded blocks show the input data.  For the fluids used in this research, PSAT, density, and viscosity data are 
used for parameter regression.  The CM with volume-shift parameters is referred to as the CMwV (the right branch of the flow chart).  
The CMw/oV is the CM without volume-shift parameters (the left branch of the flow chart).  See the Introduction section for the 
definitions of steps 1-4. 
 
 

TC, PC, VC, and ω

Compositional details: molecular weight and mole 
fraction of pure and pseudo fractions

Step 1: Splitting of C7+ fraction   with  logrithmic distribution method (Pedersen et al . 1983,1984)

Step 4: Regression of Tc, Pc, , 
VC, and  using experimental 
data

PVT Data Input:
Saturation Pressure
Density
Viscosity

Peng Robinson (1978) 
without Peneloux volume shift

Peng Robinson (1978) 
with Peneloux volume shift

Regression in sequence of TC(n), TC(n-
1),…,TC(n+1-m); ω(n), ω(n-1),…, ω (n+1-m);
PC(n), PC(n-1),…,PC(n+1-m), selecting one at a
time to match saturation pressure with 1 to 20%
variation.

TC, PC, and ω regression using 
saturation pressure data

Regression in sequence of [PC(n), PC(n-
1),…,PC(n+1-m)]; [TC(n),TC(n-1),…,TC(n+1-m)];
and [ω(n), ω(n-1),…, ω (n+1-m)], selecting one
group at a time to match saturation pressure and
liquid phase density data with 1 to 20%
variation.

TC, PC, and ω regression using saturation 
pressure and liquid phase density data

Regression of [VC(n), VC(n-1),…,VC(n+1-m)]
with 1 to 20% variation to match viscosity data.

VC regression using viscosity data 
with LBC viscosity model

TC, PC, VC, and ω

Regression in sequence of TC(n), TC(n-
1),…,TC(n+1-m); ω(n), ω(n-1),…, ω (n+1-
m); PC(n), PC(n-1),…,PC(n+1-m), selecting
one at a time to match saturation pressure
with 1 to 20% variation.

TC, PC, and ω regression using 
saturation pressure data

Regression of [CPEN(n), CPEN(n-1),…,
CPEN(n+1-m)]; to match liquid phase density
data with 1 to 50% variation.

Peneloux volume  shift parameters (CPEN ) 
regression using liquid phase density data

Regression of [VC(n), VC(n-1),…,VC(n+1-
m)] with 1 to 20% variation to match
viscosity data.

VC regression using viscosity data 
with LBC viscosity model

Step 2: TC, PC, and  estimation  using  Krejbjerg and Pedersen (2006) correlations

Step 3: Equal mass fraction based grouping (Pedersen et al. 1984), resulting in  m pseudo components 
for an EOS model with total n components. In this work m is 4 for CMwV and 22 for  CMw/oV
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Figure A.2. Flow chart for the new characterization method (NM) developed in this research.  The shaded blocks show the input data. 
For the fluids used in this research, PSAT, density, and viscosity data are used for parameter regression.   

N

Y

N

Y
Density Data (exp) at n 
pressure points P, at  Tres.

 < TOL

f P
=

 f
P 

+
∆

f PCalculate %AD for saturation 
pressure = 

fP =1.0

Calculate density (cal) for all pressure 
point at Tres using mole fraction, 
molecular weight, Tc, Pc, and m for all 
components with EoS.

Calculate saturation pressure (Psat) for 
the oil at Tres using mole fraction, 
molecular weight, Tc, Pc, and m for all 
components with EoS.

fT = fT+ ∆fT

N

Y

Y

Final fT, fP, and fm used to 
calculate TC, PC, and m

N

Calculate %AAD for density

 >  at 
previous step

fT =1.0

Starting value of fm is given by solution  of  Eq. 7

Compositional details: molecular weight and mole 
fraction of pure and pseudo fraction

PR EoS (1978)

Using back calculation, 
calculate   from m for each 
pseudo components
m 0.9462, Eq. 11 
m 0.9462,  Eq. 12 

Calculate saturation 
pressure at temperature 
T=0.7Tc, using Tc, Pc, and m for 
each pseudo component using 
EOS

Calculate saturation 
pressure at temperature 
T=0.7Tc for each pseudo 
component using 

Calculate average of absolute 
differences ()  for all pseudo 
components i.e. = abs(PsatI -
PsatII)/no. of pseudo components

Calculate Tc, Pc, and  m for pseudo 
components Eqs. 4, 5, and 6.

Experimental Saturation Pressure
Psatexp [Bar] at Temperature Tres[K]
Tres= Reservoir Temperature

fm = fm +∆fm

fT < 3.5

 <  at 
previous 

step

Step 1: Splitting of C7+ fraction   with  Chi -Square distribution method  (Quiñones-Cisneros et al. 
2003). All pseudo fractions are assigned  same mass fraction.

Step 2:  For pure components standard TC, PC, and  are used;  for pseudo fractions  TC, PC, and m are 
estimated using  Kumar and Okuno (2012) correlations.

Step 3: Equal mass fraction based  grouping  (into 4 pseudo components)  and   weight mean averaging  
of  TC, PC, and m  is done.

Step 4: Regression of Tc, Pc, , VC, and  using experimental data

Viscosity 
Data

LBC model is used to tune VC

to match  viscosity using 
PVTsim

Final TC, PC, VC,  and m


