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Abstract

Reliable design of solvent injection for enhanced heavy-oil recovery requires accurate representation of multiphase behavior
for heavy-oil/solvent mixtures in a wide range of pressure-temperature-composition conditions. Characterization of a heavy
oil is more difficult than that of a conventional oil because the former is conducted under more uncertainties in composition
and PVT data. Volume-shift parameters are often required to improve density predictions, separately from compositional
behavior predictions, in conventional fluid characterization methods (CM). Thermodynamically, however, volumetric
behavior predictions (e.g., densities) are consequences of compositional behavior predictions.

In this paper, we develop a new fluid characterization method (NM) that gives accurate multiphase behavior representation
for heavy-oil/solvent mixtures without using volume-shift parameters. The Peng-Robinson (PR) EOS is used with the van der
Waals mixing rules. In the NM, pseudo components are initially assigned critical temperature (T¢), critical pressure (P¢), and
acentric factor (o) values that are optimized for the PR EOS for accurate phase behavior predictions for n-alkanes from C; to
Cio0- The subsequent regression process searches for an optimum set of T¢, Pc, and ® in physically justified directions. The
regression algorithm developed does not require user’s experience of thermodynamic modeling for robust convergence. The
NM also satisfies Pitzer’s definition of o for each component.

The NM is compared with the CM in terms of various types of phase diagrams, minimum miscibility pressure calculations,
and 1-D oil displacement simulations. Twenty two different reservoir oils are used in the comparisons. Results show that the
NM with 11 components gives phase behavior predictions that are nearly identical to those using the CM with 30 components.
A 1-D simulation case study presents that the NM can robustly reduce dimensionality of composition space while keeping
accurate multiphase behavior predictions along composition paths at different dispersion levels tested. We show that the CM
with volume shift can give erroneous phase behavior and oil recovery predictions in compositional simulation. The NM does
not require volume shift to achieve accurate predictions of compositional and volumetric phase behaviors. The two types of
phase behaviors are properly coupled in the NM.

Introduction

Solvent methods for enhanced heavy-oil recovery have been studied and implemented in oil fields (e.g., Mohanty et al. 1995;
DeRuiter et al. 1994). Various steam/solvent coinjection schemes are also proposed in the literature to improve efficiency of
the conventional steam-assisted gravity drainage (e.g., Hornbrook et al. 1991; Nasr et al. 2003; Gupta et al. 2003; Li et al.
2011; Gates and Chakrabarty 2008). Reliable design of such oil recovery processes requires compositional simulation to
model mass transfer among phases using a cubic equation of state (EOS).

Cubic EOSs are widely used in the petroleum industry to model volumetric and compositional phase behavior of
conventional oils. The most widely used cubic EOSs are the Peng-Robinson (PR) EOS (Peng and Robinson 1976, 1978) and
the Soave-Redlich-Kwong (SRK) EOS (Soave 1972). These EOSs together with the van der Waals mixing rules are suitable
for computationally efficient representation of vapor-liquid equilibria for hydrocarbon mixtures at a wide range of pressures
(Okuno et al. 2010).

However, application of these EOSs for modeling enhanced heavy-oil recovery is not straightforward. For enhanced
recovery of heavy oil, a typical operation range in pressure-temperature-composition (P-T-x) space is much wider than that for
enhanced recovery of conventional oil. When steam and solvent are coinjected for heavy-oil recovery, reservoir temperatures
lie between an initial reservoir temperature and steam temperatures; e.g., between 290 K and 530 K for a typical solvent-
steam-assisted gravity drainage. Also, mixtures of solvent and heavy oils are highly size-asymmetric, resulting in a wider
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variety of composition conditions. The wide operation range in P-T-x space provides technical challenges for the traditional
use of cubic EOSs with the van der Waals mixing rules.

Fluid characterization using an EOS is conducted based on experimental data available, which typically consist of
composition analysis and pressure-volume-temperature (PVT) data. However, it can be difficult to take reliable downhole
fluid samples for heavy oil (Zabel et al. 2010; Memon et al. 2010). Even when a reliable sample is available for a heavy oil,
its detailed composition is uncertain because of high concentrations of non-identifiable compounds. Availability of
experimental data in P-T-x space, especially at different composition conditions, is often limited for heavy oil mainly because
of its high viscosity and highly uncertain composition. Heavy-oil PVT data that are easily measurable include saturation
pressures (Psat), densities, and viscosities at different conditions. It is not unusual that they are the only reliable PVT data for
a heavy oil.

Characterization of conventional oils using an EOS has been developed, and implemented in commercial software
(Whitson and Brulé 2000; Pedersen and Christensen 2007). A typical characterization process consists of four main steps as
follows:

Step 1. Estimation of a molar distribution with respect to molecular weight (MW) or carbon number (CN) to split the plus
fraction (e.g., C;.) into detailed components.

Step 2. Estimation of properties for the detailed components such as critical temperature (T¢), critical pressure (Pc), critical
volume (V¢), acentric factor (), and volume-shift parameters.

Step 3. Grouping of the detailed components into fewer pseudo components.

Step 4. Regression of pseudo components’ properties to match experimental data available.

In step 1, a distribution function is fitted to the composition analysis data available. Forms of distribution functions
proposed in the literature include the gamma (Whitson 1983), chi-square (Quifiones-Cisneros et al. 2003), and logarithmic
distributions (Pedersen et al. 1983, 1984). The gamma distribution is the most general form among the three, and reduces to
the other two when certain assumptions are used. The logarithmic distribution is a widely used form for conventional oil
characterization, where composition analysis can provide composition information for a large fraction of the fluid. Heavy oils
often require more flexible distribution functions, like the gamma and chi-square ones, to match their composition analysis
data (Ghasemi et al. 2011). Regardless of the type of the distribution function used, however, the reliability of the resulting
molar distribution depends primarily on how much uncertainty is left as a plus fraction in composition analysis.

Step 2 uses correlations to estimate properties of the split components because critical properties measured for
hydrocarbons heavier than C,; are not available (Ambrose and Tsonopoulos 1995). These correlations include Edmister
(1958), Cavett (1962), Lee and Kesler (1975), Kesler and Lee (1976), Twu (1984), Riazi and Daubert (1980, 1987), Riazi and
Al-Sahaff (1966), and Korsten (2000). The correlations of Pedersen et al. (1989, 1992, 2004) are functions of MW and density
at atmospheric conditions, which are in turn functions of CN. These correlations are developed for an EOS to reproduce vapor
pressures and the critical point for the pseudo component of a given CN. However, the PR and SRK EOSs with these
correlations cannot accurately model densities of heavy hydrocarbons unless volume-shift parameters (Peneloux et al. 1982;
Jhaveri and Youngren 1988) are used. Krejbjerg and Pedersen (2006) developed new correlations for Tc, Pc, and o for heavy-
oil characterization. Their correlations do not attempt to model three-hydrocarbon-phase behavior, although such phase
behavior often occurs for highly asymmetric mixtures of heavy oil with solvent (Polishuk et al. 2004).

Step 3 reduces the number of components used in the fluid model and calculates properties of each pseudo component by
averaging over its member components. Use of fewer components can make EOS calculations more efficient, but it can also
result in erroneous predictions of phase behavior due to reduced dimensionality in composition space. Grouping procedures in
the literature include the ones of Pedersen et al. (1984) and Whitson and Brulé (2000). The former uses the equal mass
grouping with mass-weighted averaging of properties, while the latter uses the equal mole grouping with mole-weighted
averaging. As mentioned before, simulation of solvent methods for heavy-oil recovery requires reliable representation of
phase behavior at a wide range of composition conditions. Therefore, a reliable fluid model for solvent/heavy-oil mixtures
often requires more components than that for solvent/conventional-oil mixtures.

Step 4 is often needed because each of steps 1-3 makes certain assumptions resulting in deviations of predictions from
actual phase behavior. Regression procedures for conventional oil characterization are discussed in detail in Whitson and
Bruleé (2000) and Pedersen and Christensen (2007). Typical parameters adjusted in this step include T¢, Pc, ®, volume-shift
parameters, and binary interaction parameters (BIPs) for pseudo components. The constant terms of the attraction and
covolume parameters of a cubic EOS, Q, and ,, are sometimes adjusted, but this is not recommended as explained by Wang
and Pope (2001). These adjustment parameters offer flexibility that may be required to match various types of PVT data such
as Pgar, constant mass expansion, constant volume depletion, differential liberation, separator tests, swelling tests, minimum
miscibility pressures, and viscosity data. Different EOS fluid models can result depending on which parameters are adjusted
and how much they are adjusted (Lolley and Richardson, 1997).

As described above, each of steps 1-4 is more difficult for heavy oil than for conventional oil. The main reason for the
difficulties is that heavy-oil characterization is conducted under high uncertainties in oil composition, components’ properties
(e.g., T, Pc, and o), and phase behavior in P-T-x space. Also, considering direct use of EOS fluid models in compositional
simulation, it is undesirable that modeling heavy-oil/solvent mixtures often requires many components to accurately model
their phase behavior.
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In this research, a new characterization method is developed for simulation of enhanced heavy-oil recovery. We address
the uncertainty issues discussed above by incorporating physical observations into our procedures for critical parameter
estimation, step 2, and regression, step 4. Since density data are easier to obtain than composition data, especially for heavy
oil, our method effectively uses density data to improve phase behavior predictions in P-T-x space; i.e., volume-shift
parameters are not required in our characterization method. In the following section, the conventional characterization method
used in this research is defined. We then present a new characterization method and its application to 22 different reservoir
oils. Comparisons are made between the new and conventional characterization methods in terms of phase behavior
predictions in P-T-x space for actual reservoir oils and their mixtures with solvents.

Conventional Characterization Method Used in This Research

The conventional characterization method used in this research is based on Pedersen and Christensen (2007) and the PVTsim
software of Calsep (2011). Descriptions are given below for the conventional characterization steps 1-4 (see the introduction
section for the definitions of the steps). All characterizations in this research assume that PVT data available are the oil Pgar at
the reservoir temperature, and liquid densities and viscosities at different pressures at the reservoir temperature. All EOS
calculations in this research use the PR EOS, Eq. 1, with the van der Waals mixing rules.
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Step 1 of the conventional method assumes a logarithmic distribution for splitting a plus fraction. In step 2, critical
properties, such as T, Pc, and o, are estimated using Krejbjerg and Pedersen (2006). Step 3 uses the equal mass grouping
with mass-weighted averaging of properties.

Although there is no well-defined regression scheme for step 4 due to its high flexibility in the conventional method, Fig.
A.1 depicts the conventional regression scheme used in this research, which is based on Pedersen and Christensen (2007) and
Christensen (1999). Adjustments are made for T¢, Pc, and o of pseudo components to match the Pgar at the reservoir
temperature. Adjustment parameters are selected based on their sensitivities to Pgat calculation (Voulgaris et al. 1991).

After matching the Psar, density data at different pressures at the reservoir temperature are matched. We consider two
options here; one is to adjust T¢, Pc, and o, and the other to adjust volume-shift parameters (the Cpgy parameters in the
PVTsim software). The second option is widely used in the literature. In this paper, the conventional methods with the first
option and with the second option are referred to as the CMy,,V and CM,,V, respectively. The CM,,V and CM,,V are
collectively called the CM. The CM,,V will be compared with our new method (NM) developed in the next section, both with
11 components. The CM,,,V will be used with 30 components to generate pseudo data for the comparisons. In the regression
step, we confirm that Tc and Pc have physically correct trends with respect to MW; i.e., Tc monotonically increases and Pc
monotonically decreases with increasing MW. As will be discussed, the NM does not require confirming the trends because
the physical trends are naturally satisfied.

V¢ for pseudo components are also adjusted to match viscosity data using the Lohrenz-Bray-Clark (LBC) model (Lohrenz
et al. 1964). BIPs are not adjusted in this research. These two notes also apply for the NM described below.

New Characterization Method Based on Perturbation from n-Alkanes

The new characterization method (NM) developed in this section addresses two major issues that the CM can pose when
applied for heavy-oil characterization. These issues, which are described below, come essentially from the fact that heavy-oil
characterization must be conducted under high uncertainties in oil composition, components’ properties (e.g., T¢c, Pc, and o),
and phase behavior in P-T-x space. In the following subsections, we first describe the issues of the CM. Our development of
the NW is then presented in detail.

Issues of the Conventional Method

One of the two major issues is in step 2, estimation of pseudo components’ properties. Conventional correlations for pseudo
components’ properties in the literature are typically functions of two parameters; e.g., MW and specific gravity. The
fundamental reason for use of two types of parameters is that a CN group contains a wide variety of compounds. One way to
categorize hydrocarbon compounds is paraffins, naphthenes, and aromatics (PNA). T¢ and Pc of paraffins are in general lower
than those of aromatics within a given CN group (Kumar and Okuno 2012). The trend is the other way around for ®. That is,
one of the two parameters, specific gravity, is required to consider the effects of a PNA distribution within a CN group on
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critical properties of the CN group. However, specific gravities of pseudo components in a plus fraction are unknown. They
are then estimated using a function of CN in Pedersen and Christensen (2007). In this way, a certain PNA distribution is
implicitly assumed in the CM for property estimation, and the PNA distribution assumed is not well defined for users.

The PNA distribution implicitly set is coupled with a shortcoming of cubic EOSs in the CM. That is, even when T¢, Pc,
and o of a well-defined hydrocarbon (e.g., a n-alkane compound) are given, cubic EOSs are inaccurate in predicting its liquid
densities unless a volume-shift parameter is used (Ting et al. 2003; Voutas et al. 2006, Yakoumis et al. 1997). This
shortcoming of cubic EOSs is more serious for heavier hydrocarbons (Kumar and Okuno 2012). Regression in step 4 then
attempts to decrease errors caused by the coupled problem mentioned above, where adjustments of Tc, Pc, and ® must be
performed with little justification in a physical sense.

Another major issue addressed in this research is the separation of volumetric and compositional behaviors using volume-
shift parameters in the CM,V. For heavy oil, available experimental data are mostly volumetric ones, instead of
compositional ones. Volume-shift parameters are typically needed when the CM is used with a small number of components
to match heavy-oil density data. In such a case, compositional behavior predictions of the resulting fluid model depend
significantly on how much one relies on volume-shift parameters to match density data.

Thermodynamically, however, volumetric phase behavior, including densities, is a consequence of compositional phase
behavior; i.e., compositional and volumetric phase behaviors should not be modeled separately. Density data for a given fluid
contain its composition information. The CMV does not effectively use density data to improve compositional phase
behavior predictions. Although composition analysis is often difficult for heavy oils, density data can supplement
compositional data for heavy-oil characterization by minimizing use of volume-shift parameters. Thus, our NM does not use
volume-shift parameters, which can also reduce the number of adjustment parameters.

Characterization Steps in the New Method

The most important novelties of the NM lie in steps 2 and 4 as will be described below. For steps 1 and 3, the NM is based on
Quiflones-Cisneros et al. (2003, 2004ab, 2005); i.e., the chi-square distribution is used for step 1, and the equal mass grouping
with mass-weighted averaging of properties is used for step 3.

Step 2, estimation of T¢, Pc, and o for pseudo components, in the NM is based on the correlations of Kumar and Okuno
(2012). The PR EOS with the correlations gives accurate predictions of liquid densities and vapor pressures for n-alkanes
from C; to Cio without using volume-shift parameters. The NM considers a PNA distribution of a plus fraction as
perturbation from a limiting distribution of 100% n-alkanes. Considering the trends of Tc, Pc, and © with respect to the PNA
distribution, T¢ and P¢ of a pseudo component should be higher than the n-alkane values from the correlations of Kumar and
Okuno (2012). Similarly, ® of a pseudo component should be lower than the n-alkane values. The amounts of perturbations
in Tc, Pc, and o from the n-alkane values are related to the concentration of components other than n-alkanes, especially
aromatic components, in the plus fraction. Step 2 of the NM combines the perturbation concept and the correlations of Kumar
and Okuno (2012) as given in Egs. 4, 5, and 6.

270.4911
T, = 508.15 + 688.7 Lexp(— 2oty “)
—0.6296
P=53765(%) - 158 )

43.4572)

m = 0.51824 + 2.5847(f, MW)_(fm MW (6)

The m parameter in Eq. 6 is defined in Egs. 2 and 3 as a one-to-one function of . The perturbation factors for Tc, Pc, and m
are expressed as fr, fp, and f,,, respectively. Equations 4-6 reduce to the correlations of Kumar and Okuno (2012) for n-
alkanes when the perturbation factors are 1.0. As a pseudo component deviates from the n-alkane with the same MW, fr and
fp increase, and f,, decreases from the value of 1.0.

Equations 4-6 also consider another physical trend that can be derived from the correlations of Riazi and Al-Sahhaf (1996)
and Pan et al. (1997). Using their correlations, the differences between aromatics and paraffins in terms of T¢ and P decrease
with increasing MW (Figs. 1 and 2). In terms of m, the difference exhibits a maximum around MW of 500 gm/mol as shown
in Fig. 3. These curves indicate that the effects of non-alkane compounds on T¢, P¢, and m vary with MW.

Figures 1-3 also show how T¢, Pc, and m in our Egs. 4-6 deviate from their n-alkane values as the perturbation factors (fr,
fp, and f,)) change from unity. Figures 1-3 present that Eqs. 4-6 qualitatively represent the physical trends mentioned above.
Fig. 1 shows that the sensitivity of T¢ to fr in Eq. 4 exhibits a maximum around MW of 200 gm/mol, which is not observed
from the correlations of Riazi and Al-Sahhaf (1996). However, the behavior of T¢ with respect to fr in the MW range of 100-
200 gm/mol does not affect practical fluid characterization because most of pseudo components are out of this MW range,
especially for heavy oils.

Step 4 of the NM uses Eqgs. 4-6 to regress Tc, Pc, and m of pseudo components for matching Pgat and density data. Figure
A.2 presents the algorithm to adjust fr, fp, and f,,. There are three main iteration loops, the Pgat, density, and @ loops. The
Psat loop is the innermost loop contained by the density loop. The ® loop contains the other two loops.

The initial values for fr and fp are 1.0. The f;,, parameter is initialized by solving Eq. 7,
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where MW/ is the MW of the lightest pseudo component in a fluid model. The value on the left side of Eq. 7, i.e. 0.6, is lower
than the m for benzene, 0.6866 (see Eq. 2 with ® = 0.21). Use of Eq. 7 assumes all pseudo components are heavier than Cs.
The value 0.6 can be unduly low if MW, is much greater than the MW of benzene. However, this value is recommended for
robustness.

In the Pgar loop, fp is adjusted by Afp (e.g., +10"6) per iteration to match the Psyr by decreasing the y function (Eq. 8).
Once the y function becomes smaller than a tolerance (e.g., 10™), the density loop decreases the & function (Eq. 9) by
adjusting fr and . In the density loop, fp is set to 1.0 at the beginning of each iteration, and fr is adjusted by Afr (e.g., +107)
per iteration. If the fr exceeds 3.5 or the § function at the current iteration is greater than that at the previous iteration, then the
algorithm moves to the ® loop. The fr value can be greater than the upper bound of 3.5 when MW, is much greater than the
MW of benzene in Eq. 7.

__abs(Experimental Pgat — Calculated PsaT)*100

P . (®)
Experimental PsaT
5= Zl‘c 1 [abs(Experimental Density—Calculated Density)*loo] (9)
=1y Experimental Density ;

The o loop is to satisfy the internal consistency of Tc, P¢, and ®; i.e., the definition of @ given by Pitzer (1955) and Pitzer
et al. (1955) and in Eq. 10. Equations 11 and 12 are used to back calculate @ from the current m for each pseudo component.
These o values are then used in Eq. 10 to obtain saturation pressures for pseudo components (Psat) at 0.7Tc.

(PSAT)atTr=0.7 = 10_(1+w)Pc (10)
m = 0.37464 + 1.542260 — 0.26992w?> for o < 0.3984 (11)
m = 0.379642 + 1.48503m — 0.164423w? + 0.016666w> for ® = 0.3984 (12)

Use of the PR EOS with the current T¢, Pc, and o yields another saturation pressure at 0.7T¢ (Psary) for each pseudo
component. The average absolute deviation € for Psar; and Psary for all pseudo components is then calculated using Eq. 13

1
€ =~ Xit1 Abs(Psarr — Psarn), (13)

where n is the number of pseudo components. If fr is greater than 3.5 or the € function at the current iteration is smaller than
that at the previous iteration, f,, is increased by Af;, (e.g., +107 ) to continue on the ® loop. For each o iteration, fr and fp start
with 1.0. The final values for fr, fp, and f,, are determined when the € function becomes greater than that at the previous
iteration. The final set of fr, fp, and f;,, gives the first minimum of the € function encountered in the calculation.

In the regression algorithm, the initial value is 1.0 for fr and fp, corresponding to the n-alkane values in Kumar and Okuno
(2012). The search direction for fr and fp is the increasing direction from their initial values because pseudo components’ T¢
and Pc should be higher than n-alkane’s value for a given MW. So, Afr and Afp are positive to be physically justified. We set
a lower bound for f,, in Eq. 7, which is used as the initial f,, value. So, Af;, should also be positive. If the converged f,, is
smaller 1.0, it is consistent with the @ perturbation concept that pseudo components’ ® should be lower than n-alkane’s value
for a given MW.

The regression algorithm in the NM provides a unique set of Tc, Pc, and m unlike the CM, where the resulting T, P¢, and
m depend on the selection of adjustment parameters and adjustment amounts for them. Our regression algorithm can work
with fewer adjustment parameters, compared to the CM, because of the physical observations incorporated in its development.

Equations 11 and 12 are different from Egs. 2 and 3 in terms of their ® ranges. Equations 2 and 3 give the same value
form at @ = 0.39839, but not at the boundary ® = 0.49. The value of 0.39839 falls in the ® range 0.20-0.49 that is
recommended for both Egs. 2 and 3 by Peng and Robinson (1978). Therefore, the value of 0.3984 is chosen as the boundary
value for Egs. 11 and 12.

The NM developed in this section uses the PR EOS. However, it can also be used with other cubic EOSs if a new set of
critical parameters is developed for the selected cubic EOS as Kumar and Okuno (2012) did for the PR EOS. The regression
algorithm assumes that densities, viscosities, and Psst data are the only available PVT data. More adjustment parameters may
be required when more PVT data are available, especially at different composition conditions. The regression algorithm can
be extended for such a case by using molar distribution parameters as variables and creating additional loops. For example,
the chi-square distribution has two parameters, which influence mole fractions and MWs of pseudo components. These
adjustment parameters will be effective especially for heavy oils, considering the importance of molar distributions of pseudo
components in EOS calculations. BIPs for pseudo-component/non-hydrocarbon (e.g., CO,) pairs can significantly affect phase
behavior calculations. So, BIPs can also be used as regression parameters. However, we recommend that the regression step
should minimize the number of adjustment parameters to avoid physically absurd adjustment of parameters.
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Characterization of Reservoir Oils Using the New Method

In this section, the NM is applied to 22 different reservoir oils ranging from 9.5 API to 60.18° API. The oils are actual
reservoir oils, for which data are available in the literature as shown in Table 1. The number of pseudo components is fixed to
be four for the 22 oils. Mole fractions and MWs of pseudo components for oils 1-13 and 18-20 are taken directly from the
corresponding references, which are based on the chi-square distribution. Pgat and reservoir temperature data are available in
the references as numerical values for the 22 oils. Many of the density data used have been obtained by digitizing density
plots in the references. The number of density data points used is given for each oil in Table 1.

Figure 4 shows how the € function varies with f;,, for oils 5, 6, and 9. Step 4 of the NM converges to the final set of fr, fp,
and f, (and corresponding Tc, Pc, and m) at a minimum € value for each oil. The same behavior of f;, occurs for the other oils
studied in this research.

Table 1 lists the converged fr, fp, and £, values for the 22 oils studied. Figures 5, 6, and 7 show the relationship between
the API gravity and the converged fr, fp, and f,, values, respectively. For all the oils, the converged fr and f; values are greater
than 1.0, and the converged f, values are smaller than 1.0. These results indicate that the regression algorithm successfully
found the solutions that are consistent with the perturbation concept described in the previous section.

Figures 5-7 also show a trend that fr, fp, and f,, are converging toward 1.0 as the API gravity becomes larger. This is likely
because the paraffinic portion of the PNA distribution for a lighter oil is greater than that for a heavier oil. The PNA
distribution of a heavy oil in general can deviate significantly from the reference distribution of 100% n-alkanes because a
heavier CN group allows for a wider variety of compounds in it.

Unlike manual adjustments performed in the CM, the regression process in the NM is automatic and takes only 1-3
minutes per oil using our code written in FORTRAN on the Intel Core i7-960 processor at 3.20 GHz and 8.0 GB RAM. The
algorithm presented is based on the exhaustive search method of optimization for robustness. More rapid convergence will be
achieved if a gradient method is used with initial guesses for fr, fp, and f, based on the previous iteration steps.

Comparisons Between the New and Conventional Methods

We now make comparisons between the NM and CM in terms of various types of phase behavior predictions in P-T-x space
for the oils in Table 1. Since there is no data available in composition space for the oils listed in Table 1, pseudo data are
created for the 22 oils using the CM,,,V with 30 components (see Fig. A.1 for the CM,,,V algorithm). The 30 components
consist of N, CO,, C;, C,, C;, Cy4, Cs, Cs, and 22 pseudo components for the C;. fraction. BIPs between the hydrocarbon
components are zero. All other BIPs used for the 30-component models are default values in PVTsim as follows: -0.017 for
N,-CO,, 0.0311 for N,-C, 0.0515 for N,-C,, 0.0852 for N,-Cs, 0.08 for N,-C,4, 0.1 for N,-Cs, 0.08 for N,-C;, where i > 6, 0.12
for CO,,-C;, where 1 <j <6, and 0.1 for CO,-pseudo-components.

Separately from the 30-component models created for pseudo data, two fluid models are created for each oil using the NM
and CM,,V with 11 components (see Figs. A.1 and A.2 for the CM,,V and NM algorithms, respectively). The 11 components
consist of N, CO,, C;, C,, C;, Cys, Cq, and 4 pseudo components for the C;; fraction. In this research, BIPs are not
adjustment parameters, and fixed BIP values are used for the 22 oils. BIPs are zero between the hydrocarbon components.
The other BIPs used in the NM are 0.0 for N,-CO,, 0.1 for N,-C;, where 1 <i <6, 0.13 for N,-pseudo-components, and 0.1 for
CO,-hydrocarbons. These values are based on Peng and Robinson (1978). BIPs in the CM,,V are default values in PVTsim,
which are given above for the 30-component characterization.

In the following subsections, phase behavior predictions based on the NM and CM,,V are compared with the pseudo data.
Tables 2, 3, 4, and 5 give the resulting fluid models for oil 3 (13.38° API) and oil 6 (24.25° API) using the NM and CM,,V.
These models are used in many of the comparisons presented below.

P-T Predictions

We first present the comparisons in terms of P-T predictions. Heavy-oil/solvent mixtures often exhibit three hydrocarbon-
phases near the vapor pressures of the solvent components. The three phases consist of the gaseous (V), oleic (L), and
solvent-rich liquid (L) phases (e.g., Mohanty et al. 1995; Polishuk et al. 2004). Figures 8 and 9 show the 2-phase and 3-
phase envelopes for a mixture of 0il 6 10% and C, 90%. The CM,,V gives the V-L; and V-L,-L, regions that are much smaller
than those predicted by the NM. The NM predictions are in good agreement with the pseudo data points. The NM predictions
are more accurate for lower temperatures. The three-phase envelope predicted by the NM almost coincides with data.

The deviation of the CM,,V predictions from the pseudo data is more significant for a mixture of oil 6 10% and C; 90%.
Figure 10 shows that the CM,,V results in an erroneous two-phase envelope for this mixture. The NM correctly generates the
phase behavior predictions. Figure 11 shows that the NM predicts a three-phase envelope that is close to the data points. The
three-phase behavior predicted by the CM,V occurs in a much smaller P-T region apart from the correct three-phase region
based on the pseudo data and the NM.

The accuracy of the NM for L;-L,-V phase behavior is remarkable considering that the complex phase behavior
characteristic of highly asymmetric hydrocarbon mixtures is predicted using only four pseudo components for the C;, fraction.
The reduced dimensionality in composition space does not damage phase behavior predictions using the NM.
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P-x Predictions

A P-x prediction presents a cross section of isothermal phase behavior between two compositions. In this subsection, we show
P-x predictions for the 0il-6/C;, 0il-6/C,, and 0il-6/CO, pairs at the 0il-6 reservoir temperature 333.15 K. Figure 12 shows the
P-x predictions along with pseudo data for the 0il-6/C; pair. The NM and CM,,V are accurate at low mixing ratios of C;. This
is because the 11-component models are fitted to Psat at the reservoir temperature at the oil composition. As the mixture
composition goes away from the oil composition, the CM,,V predictions deviate from the pseudo data. The NM accurately
predicts the bubble-point pressures along the mixing line.

The advantage of the NM over the CM,,V becomes more significant for P-x predictions for the 0il-6/C, pair as shown in
Fig. 13. At the C, mixing ratio of 90%, the CM,,V predicts a bubble point at 137.44 bars, which is approximately 39 bars
lower than the pseudo data and the prediction by the NM.

Mixtures of CO, and reservoir oil often exhibit continuous transition between L;-V and L,-L, phase equilibria (Okuno et
al. 2011) at low temperatures. Figure 14 presents such phase behavior for oil 6 and CO, at 333.15 K. The NM accurately
predicts the upper boundary of the two-phase region in P-x space. The CM,,V erroneously gives a smaller region for the
immiscible two liquid phases.

Figure 15 shows saturated liquid densities predicted along the mixing line between oil 6 and the equimolar C;-C, mixture
at 333.15 K. The density at the oil composition was used to create the EOS fluid models, so the CM,,V and NM are both
accurate at lower mixing ratios of the solvent. As the mixture composition goes away from the oil composition, however, the
CM,,V predictions deviate from the NM predictions and the pseudo data. The results indicate that the fluid models based on
the CM,,V cannot accurately represent phase equilibria and volumetric properties at compositions away from the oil
composition.

T-x Predictions

A T-x diagram presents another important cross section of phase behavior, particularly when coinjection of solvent and steam
is considered for heavy-oil recovery. Figure 16 shows T-x predictions for 0il-3/C¢ mixtures at 34.47 bars. The CM,V
overpredicts saturation temperatures except for low Cg¢ mixing ratios, while the NM accurately predicts them along the mixing
line. If the fluid model based on the CM,,V is used in reservoir simulation of solvent/steam coinjection, propagation of the
solvent in the reservoir can be significantly underestimated, resulting in erroneous reservoir performance forecasts.

The overprediction of saturation temperatures by the CM,,V becomes more significant for higher pressures. Figure 17
shows T-x predictions at 60.00 bars. The NM still predicts accurately the saturation temperatures at all mixing ratios tested.
However, the CM,,V predicts much higher saturation temperatures even at low Cq mixing ratios. The deviation at the C¢
mixing ratio of 0.3 is 139 K. At C¢ mixing ratios higher than 0.3, there are no saturation temperatures predicted by CMV
because the cricondenbar becomes lower than 60.00 bars as can be seen in Fig. 18.

Thermodynamic Minimum Miscibility Pressure (MMP) Calculation

The thermodynamic MMP is the minimum displacement pressure at which complete miscibility is developed along the
composition path from the injectant to the reservoir oil for one-dimensional flow in the absence of dispersion (Johns and Orr
1996). The thermodynamic MMP is a widely used parameter for design of solvent injection. In this subsection, the
thermodynamic MMPs are calculated for 18 oils in Table 1 at their reservoir temperatures. Two different injectants are
considered; pure C; and pure CO,. For the C; cases, the MMP calculations are performed based on the method of
characteristics using PVTsim. For the CO, cases, the mixing-cell method within PennPVT (Johns 2012; Ahmadi and Johns
2011) is used. MMP calculations are not shown for oils 1, 2, 4, and 18 because three phases are present during the MMP
calculations using the EOS fluid models for these oils based on the CM,,,,V with 30 components.

Figure 19 compares the MMPs based on the NM with the pseudo data for 18 oils with C,. Although the C;-MMPs
presented are calculated at different temperatures, the plots show that the calculated C;-MMPs are higher for heavier oils. The
accuracy of the MMPs observed for the wide variety of oils indicates that the NM successfully retains compositional phase
behavior using only four pseudo components for the C; fraction. Figure 20 shows that the C;-MMPs predicted based on the
CM,,V are lower than the pseudo data. The deviation is more significant for heavier oils. The maximum deviation of the C;-
MMPs is 5.6% for the NM, but it is 34% for the CM,,V. Figures 21 and 22 show the comparisons of the NM with the CM,,V
in terms of the CO,-MMP. The maximum deviations of the CO,-MMPs are 7.4% and 62% for the NM and the CM,,V,
respectively.

Figures 20 and 22 indicate that compositional phase behavior predictions are more erroneous for heavier oils using the
CM,, V. This is because the CM,,V uses density corrections through volume-shift parameters. A larger amount of volume
correction is required and performed for heavier oils in the CM,,V as shown in Tables 3 and 5 (see also the Issues of the
Conventional Method subsection). However, the thermodynamic MMP considered here is a parameter representing primarily
compositional phase behavior, instead of volumetric phase behavior, of the fluid system considered. Therefore, the separation
of volumetric from compositional phase behavior predictions causes errors in MMP predictions.

1-D Displacement Simulation Case Study
Solvent injection for heavy-oil recovery is typically conducted under partially miscible conditions. In such displacements, the
oil recovery history depends on how components propagate with the throughput of injectant. This subsection presents a
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simulation case study for 1-D isothermal displacement of oil 6 with the equimolar C;/C, mixture under partially miscible
conditions. The MMP calculated for this case is 412.23 bars using the CM,,,V with 30 components. Using 11 components, it
is 415.38 bars and 327.23 bars based on the NM and the CM,,V, respectively (see Tables 4 and 5 for the fluid models). Input
data for the simulations using the GEM simulator of Computer Modelling Group (2011) are given in Table 6. The injection
and production pressures are fixed at 203.45 bars and 200 bars, respectively. The small pressure difference is used to make
pressure variation in the reservoir small. Simulation results based on the CMy,,,V with 30 components are used as pseudo data.
Simulation results based on the NM and CM,,V are then compared.

Figure 23 shows oil recovery predictions compared to the pseudo data. The recovery curves for 0.0-0.3 hydrocarbon pore-
volumes injected (HCPVI) are not shown because they nearly coincide. Oil recovery based on the NM is almost identical to
the pseudo data. However, the CM,,V results in oil recovery simulation that is significantly overpredicted by approximately
8%. The overprediction is consistent with other comparisons made in previous subsections, where the fluid models based on
the CM,,V exhibit more miscibility in their phase diagrams and MMP calculations. To see the effect of numerical dispersion
on oil recovery simulation, the number of gridblocks is decreased from 250 to 50. Figure 23 shows the same advantage of the
NM over the CM,,V under more dispersive conditions (The previous subsection showed comparisons for the dispersion-free
case). So, the number of gridblocks is fixed to be 250 for further comparisons.

The different oil recovery histories are predicted because the NM and CM,,V predict different saturation profiles as shown
in Fig. 24. Figure 25 shows that the C, fronts based on the NM and CM,,V deviate from each other, resulting in different
predictions of gas breakthrough as can be seen in Fig. 23. Figure 24 also indicates the CM,,V erroneously predicts faster
propagation of heavy components. Since the deviation of the CM,,V shown in Fig. 24 increases with the injectant throughput,
the simulation based on the CM,,V becomes more erroneous at later times.

Conclusions

We developed a new method for fluid characterization using the PR EOS with the van der Waals mixing rules. The method

characterizes reservoir fluids using perturbations of T, P¢, and ® from n-alkane values. Tc, Pc, and o for n-alkanes used are

based on our previous research, which are optimized for the PR EOS for predictions of vapor pressures and liquid densities

without volume shift. The optimized reference values allow for robust regression using three perturbation factors fr, fp, and f;,

for T, Pc, and o, respectively. In our regression, Pitzer’s definition of ® is correctly satisfied for each component. The new

characterization method was applied to 22 different reservoir oils. Comparisons were made between the new and conventional
characterization methods in terms of predictions of various phase diagrams, thermodynamic minimum miscibility pressures

(MMPs), and 1-D oil displacement. The conclusions are as follows:

1. The new method (NM) exhibits significant insensitivity of phase behavior predictions to the number of components used
for a plus fraction. Two- and three-phase behavior predictions in P-T-x space using the NM with 11 components are
almost identical to those using the conventional method without volume shift (CM,,,,V) with 30 components.

2. The reliability of the NM is also observed for MMP calculations and 1-D oil displacement simulations. Qil displacement
predictions based on the NM with 11 components are nearly identical to those based on the CM,,,,V with 30 components.
This is true even at different dispersion levels tested. Results indicate that the NM can reduce dimensionality of
composition space while keeping accurate phase behavior predictions along composition paths at different dispersion
levels.

3. The NM does not require volume-shift parameters to accurately predict compositional and volumetric phase behaviors.
The conventional method with volume shift (CM,, V) separates volumetric phase behavior predictions from compositional
phase behavior predictions. This separation should be carefully used especially for heavy-oil characterization. Our results
show that the CM,,V with 11 components yields erroneous phase behavior predictions, which typically show significantly
smaller two- and three-phase regions in P-T-x space. The advantage of the NM over the CM,,V in phase behavior
predictions is more significant for P-T-x conditions away from those used for parameter regression.

4. The new regression algorithm developed searches for an optimum set of T¢, Pc, and @ for pseudo components using
physically justified search directions starting from the well-defined initial values. Unlike in the CM, convergence of Tg,
Pc, and o does not depend on user’s experience in thermodynamic modeling. The automatic regression process in the
NM took only a few minutes per oil for the 22 oils characterized.

5. The perturbation factors fr, fp, and f,, developed in this research are unity for n-alkanes. The perturbation factors capture
physical trends that can be derived from the literature; e.g., for a given molecular weight, T¢ and P¢ are lower and o is
larger for paraffins compared to other types of hydrocarbon compounds. For the 22 oils characterized in this research, the
converged fr and fp values are all greater than 1.0, and the converged f, values are all smaller than 1.0. Deviations of fr,
fp, and f;;, from unity can be physically interpreted as deviations of the plus fractions from n-alkane mixtures.

6. The NM requires no changes in the current compositional simulation formulation because it uses the PR EOS with the van
der Waals mixing rules.
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Nomenclature

Roman Symbols

A = Attraction parameter in a cubic equation of state

A = Aromatic

Anix = Attraction parameter for a mixture in a cubic equation of state
b = Covolume parameter in a cubic equation of state
Bnix = Covoulme parameter for a mixture in a cubic equation of state
Cpen = Peneloux volume-shift parameter

m = Parameter in the Peng—Robinson EOS (1978) defined in Egs. 2 and 3
D = Dimension

fin = Perturbation factor for the m parameter

fp = Perturbation factor for critical pressure

fr = Perturbation factor for critical temperature

Af, = Step size for f;,

Afp = Step size for fp

Afr = Step size for fr

my = Acentric factor for aromatics

k = Number of density data

mp = Acentric factor for paraffins

n = Number of pseudo components

N = Napthenes

p = Pressure, bar

P = Paraffins

Pc = Critical pressure, bar

Pca = Critical pressure of aromatics, bar

Pcp = Critical pressure of paraffins, bar

R = Universal gas constant

T = Temperature, K

Tc = Critical temperature, K

Teca = Critical temperature of aromatics, K

Tep = Critical temperature of paraffins, K

TOL = Tolerance

v = Molar volume, gm/mol

Ve = Critical volume, gm/mol

Abbreviations

°API = API (American Petroleum Institute) gravity

BIP = Binary interaction parameter

CM = Conventional (characterization) method

CM,V = Conventional (characterization) method using volume shift
CM,,,V = Conventional (characterization) method without using volume shift
CN = Carbon number

EOR = Enhanced oil recovery

EOS = Equation of state

HCPVI = Hydrocarbon pore-volume injected

MMP = Minimum miscibility pressure, bar

MW = Molecular weight, gm/mol

NM = New (characterization) method

PC = Pseudo component

PNA = Paraffin-napthene-aromatic

PR = Peng-Robinson

P-T-x = Pressure-temperature-composition

SRK = Soave-Redlich-Kwong

Greek symbols

5 = Average absolute deviation for density given by Eq. 9

£ = Average absolute deviation for saturation pressure given by Eq. 13
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Q, = Constant term in the attraction parameter of a cubic EOS
Q, = Constant term in the covolume parameter of a cubic EOS
] = Absolute % deviation given by Eq. 8
o = Acentric factor

Acknowledgments

This research was partly funded by a research grant from the Natural Sciences and Engineering Research Council of Canada.
Ashutosh Kumar has been awarded a doctoral recruitment scholarship from University of Alberta. We gratefully acknowledge
these supports. We also thank Dr. Russell T. Johns for providing the PennPVT software.

References

Ahmadi, K. and Johns, R.T. 2011. Multiple Mixing-Cell Model for MMP Determination, SPE Journal, 16(4): 733-742. SPE-116823-PA.

Ambrose, D., and Tsonopoulos, C., 1995. Vapor-Liquid Critical Properties of Elements and Compounds. 2.Normal Alkanes, Journal of.
Chemical & Engineering Data, 40(3): 531-546.

Cavett, R.H., 1962. Physical Data for Distillation Calculations, Vapor-Liquid Equilibria, Proceeding of 27th API Meeting, API Division of
Refining, 42(3): 351-366.

Christensen, P.L., 1999. Regression to Experimental PVT Data, Journal of Canadian Petroleum Technology, 38(13): 1-9.

CMG, 2011. Computer Modeling Group, Calgary, Canada.

Coats, K.H., and Smart, G.T., 1986. Application of a Regression Based EOS PVT Program to Laboratory Data, SPE Reservoir Engineering,
1(3): 277-299.

Cullick, A.S., Pebdani, F.N., and Griewank, A. K., 1989. Modified Corresponding States Method for Predicting Densities of Petroleum
Reservoir Fluids, Industrial & Engineering Chemistry Research, 28(3): 340-347.

DeRuiter, R.A., Nash, L.J., and Singletary, M.S. 1994. Solubility and Displacement Behavior of a Viscous Crude With CO, and
Hydrocarbon Gases, SPE Reservoir Engineering, 9(2): 101-106. SPE-20523-PA.

Edmister, W.C., 1958. Applied Hydrocarbon Thermodynamics, Part 4: Compressibility Factors and Equations of State, Petroleum Refiner,
37(4): 173-179.

Gates, [.D. and Chakrabarty, N. 2008. Design of the Steam and Solvent Injection Strategy in Expanding Solvent Steam-Assisted Gravity
Drainage. Journal of Canadian Petroleum Technology, 47(9): 12-20.

Ghasemi, M., Alavian, S.A., and Whitson, C.H., 2011. C;, Characterization of Heavy Oil Based on Crude Assay Data, Presented at SPE
Heavy Oil Conference and Exhibition held in Kuwait City, Kuwait, 12-24 December.

Gupta, S., Gittins, S., and Picherack, P. 2003. Insights into Some Key Issues with Solvent Aided Process. Journal of Canadian Petroleum
Technology, 43(2): 54-61.

Hornbrook, M.W., Dehghani, K., Qadeer, S., Ostermann, R.D., and Ogbe, D.O. 1991. Effects of CO, Addition to Steam on Recovery of
West Sak Crude Oil, SPE Reservoir Engineering, 6(3): 278-286. SPE-18753-PA.

Jhaveri, B.S. and Youngren, G.K., 1988. Three Parameter Modification of the Peng-Robinson Equation of State to Improve Volumetric
Predictions, SPE Journal, 3(3): 1033-1040.

Johns, R.T. and Orr, Jr., F.M. 1996. Miscible Gas Displacement of Multicomponent Oils. SPE Journal 1(1): 39-50. SPE-30798-PA.

Johns, R.T. 2012. PennPVT Manual (v. 2.9), Gas Flooding Joint Industry Project, EMS Energy Institute, Pennsylvania State University at
University Park, PA, USA.

Kesler, M. G. and Lee, B. 1., 1976. Improve Prediction of Enthalpy of Fractions, Hydrocarbon Processing, 55(3): 153-158.

Korsten, H., 2000. Internally Consistent Prediction of Vapor Pressure and Related Properties, Industrial & Engineering Chemistry Research,
39(3): 813-820.

Krejbjerg, K. and Pedersen, K. S., 2006. Controlling VLLE Equilibrium with a Cubic EoS in Heavy Oil Modeling, presented at 57th Annual
Technical Meeting of the Petroleum Society (Canadian International Petroleum Conference), June 13-15, Calgary, Canada.

Kumar, A., and Okuno, R., 2012, Critical Parameters Optimized for Accurate Phase Behavior Modeling for Heavy n-Alkanes up to Ciq
using the Peng-Robinson Equation of State, submitted to Fluid Phase Equilibria on April 22, 2012, under revision.

Lee, B.I. and Kesler, M.G., 1975. A Generalized Thermodynamic Correlation Based on Three- Parameter Corresponding States, American
Institute of Chemical Engineering Journal, 21(3): 510-527.

Li, W., Mamora, D.D., and Li. Y. 2011. Solvent-Type and —Ratio Impacts on Solvent-Aided SAGD Process. SPE Reservoir Evaluation &
Engineering, 14(3): 320-331. SPE-130802-PA.

Lohrenz, J., Bray, B.G. and Clark, C.R., 1964. Calculating Viscosities of Reservoir Fluids from Their Compositions, Journal of Petroleum
Technology, 16(10): 1171-1176.

Lolley, C.S., and Richardson, W.C., 1997. Compositional Input for Thermal Simulation of Heavy Oils with Application to the San Ardo
Field, SPE 37538, Presented at International Thermal Operation & Heavy Oil Symposium, Bakersfield, California, 10-12 December.

Memon, A.L, Gao, J., Taylor, S.D., Davies, T.L., Jia, N. 2010. A Systematic Workflow Process for Heavy Oil Characterization. Journal of
Petroleum Technology, 63(3): 89-90.

Mohanty, K.K., Masino Jr., W.H., Ma, T.D., and Nash, L.J. 1995. Role of Three-Hydrocarbon-Phase Flow in a Gas-Displacement Process.
SPE Reservoir Engineering, 10(3): 214-221. SPE-24115-PA

Nasr, T.N., Beaulieu, G., Golbeck, H., and Heck, G. 2003. Novel Expanding Solvent-SAGD Process “ES-SAGD”. Journal of Canadian
Petroleum Technology, 42(1): 13-16.

Okuno, R., Johns, R.T., and Sepehrnoori, K. 2010. Three-Phase Flash in Compositional Simulation Using a Reduced Method. SPE Journal,
15(3): 689-703. SPE-125226-PA.

Okuno, R., Johns, R.T., and Sepehrnoori, K. 2011. Mechanisms for High Displacement Efficiency of Low-Temperature CO, Floods. SPE
Journal, 16(4): 751-767. SPE-129846-PA.



SPE 159494 11

Pan, H., Firoozabadi, A., and Fotland, E, 1997. Pressure and Composition Effect on Wax Precipitation: Experimental Data and Model
Results, SPE Production & Facilities, 12(4): 250-258.

Pedersen, K. S., Milter, J., and Serensen, H., 2004. Cubic Equations of State Applied to HT/HP and Highly Aromatic Fluids, SPE Journal,
9(2): 186-192.

Pedersen, K.S., Blilie, A.L., and Meisingset, K.K., 1992. PVT Calculations on Petroleum Reservoir Fluids Using Measured and Estimated
Compositional Data for the Plus Fraction, Industrial & Engineering Chemistry Research, 31(5): 1378-1384.

Pedersen, K.S., and Christensen, P.L., 2007, Phase Behavior of Petroleum Reservoir Fluids, CRC Press, Taylor & Francis Group, Boca
Raton, FL, USA

Pedersen, K.S., Thomassen, P. and Fredenslund, Aa., 1989. Characterization of Gas Condensate Mixtures, Advances in Thermodynamics,
Taylor & Francis, New York, 1, 137-152.

Pedersen, K.S., Thomassen, P., and Fredenslund, Aa., 1983. SRK-EOS Calculation for Crude Oils, Fluid Phase Equilibria, 14(C): 209-218.

Pedersen, K.S., Thomassen, P., and Fredenslund, Aa., 1984. Thermodynamics of Petroleum Mixtures Containing Heavy Hydrocarbons. 1.
Phase Envelope Calculations by Use of the Soave-Redlich-Kwong Equation of State, Industrial & Engineering Chemistry Process
Design and Development, 23(1): 163-170.

Peneloux, A., Rauzy, E. and Fréze, R., 1982. A Consistent Correlation for Redlich-Kwong-Soave Volumes, Fluid Phase Equilibria, 8(1): 7-
23.

Peng, D.-Y. and Robinson, D.B., 1976. A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals, 15(1):
59-64.

Peng, D.-Y., and Robinson, D.B., 1978. The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs,
GPA Research Report RR-28.

Pitzer, K.S, 1955. The Volumetric and Thermodynamic Properties of Fluids. I. Theoretical Basis and Viral Coefficients, Journal of
American Chemical Society, 77(13): 3427- 3433.

Pitzer, K.S., Lippmann, D.Z., Curl, Jr. R. F., Huggins, C.M., and Petersen, D.E., 1955. The Volumetric and Thermodynamic Properties of
Fluids. II. Compressibility Factor, Vapor Pressure and Entropy of Vaporization, Journal of American Chemical Society, 77(13): 3433-
3440.

Polishuk, I., Wisniak, J., and Segura, H. 2004. Estimation of Liquid-Liquid-Vapor Equilibria in Binary Mixtures of n-Alkanes. Industrial
and Engineering Chemistry Research, 43(18): 5957-5964.

PVTsim, 20.0,2011. CALSEP International Consultants, Copenhagen, Denmark.

Quifones-Cisneros, S.E., Andersen, S.I., and Creek, J., 2005. Density and Viscosity Modeling and Characterization of Heavy Oils, Energy
& Fuels, 19(4): 1314-1318.

Quifones-Cisneros, S.E., Zéberg-Mikkelsen, C.K., Baylaucq, A., and Boned, C., 2004a. Viscosity Modeling and Prediction of Reservoir
Fluids: From Natural Gas to Heavy Oils, International Journal of Thermophysics, 25(5): 1353-1366.

Quinones-Cisneros, S.E., Dalberg, A., and Stenby, E.H., 2004b. PVT Characterization and Viscosity Modeling and Prediction of Crude
Oils," Petroleum Science and Technology, 22(9-10): 1309-1325.

Quiflones-Cisneros, S.E., Zéberg-Mikkelsen, C.K., and Stenby, E.H., 2003. Friction Theory Prediction of Crude Oil Viscosity at Reservoir
Conditions Based on Dead Oil Properties, Fluid Phase Equilibria, 212(1-2): 233-243.

Riazi, M.R. and Daubert, T.E., 1980. Simplify Property Predictions, Hydrocarbon Processing, 59(3): 115-116.

Riazi, M.R. and Daubert, T.E., 1987. Characterization Parameters for Petroleum Fractions, Industrial & Engineering Chemistry Research,
26(4): 755-759.

Riazi, M.R., and Al-Sahhaf, T.A., 1996. Physical Properties of Heavy Petroleum Fractions and Crude Oils, Fluid Phase Equilibria, 117(1-
2):217-224.

Soave, G., 1972. Equilibrium Constants from a Modified Redlich-Kwong Equation of State, Chemical Engineering Science, 27(6): 1197-
1203.

Ting, P.D., Joyce, P.C., Jog, P.K., Chapman, W.G., and Thies, M.C., 2003. Phase Equilibrium Modeling of Mixtures of Long-chain and
Short Chain Alkanes Using Peng-Robinson and SAFT, Fluid Phase Equilibria, 206(1-2): 267-286.

Twu, C.H., 1984. An Internally Consistent Correlation for Predicting the Critical Properties and Molecular Weights of Petroleum and Coal-
Tar Liquids, Fluid Phase Equilibria, 16(2): 137-150.

Voutsas, E.C., Pappa, G.D., Magoulas, K., and Tassios, D.P., 2006. Vapor Liquid Equilibrium Modeling of Alkane Systems with Equation
of State: “Simplicity versus Complexity”, Fluid Phase Equilibria, 240(2): 127-139.

Voulgaris, M., Stamatakis, S., Magoulas, K., and Tassios, D., 1991. Prediction of Physical Properties for Non-polar Compounds, Petroleum
and Coal Liquid Fractions, Fluid Phase Equilibria, 64, 73-106.

Yakoumis, 1. Kontogeorgis, G.M., Voutsas, E., and Tassios, D. 1997. Vapor-Liquid Equilibria for Alcohol/Hydrocarbon Systems Using the
CPA Equation of State. Fluid Phase Equilibria, 130(1-2): 31-47.

Wang, P. and Pope, G.A. 2001. Proper Use of Equations of State for Compositional Reservoir Simulation. Journal of Petroleum Technology,
53(7): 74-81.

Whitson, C.H., 1983. Characterizing Hydrocarbon Plus Fractions, SPE Journal, 23(4), 683-694.

Whitson, C.H. and Brule, M.R., 2000. Phase Behaviour, SPE Henry L. Doherty Series, Vol. 20, Soc. Petrol. Engs. Inc., Richardson, Texas.

Zabel, F., Law, D.H.-S., Taylor, S., and Zuo, J. 2010. Impact of Uncertainty of Heavy Oil Fluid Property Measurements. Journal of
Canadian Petroleum Technology, 49(3): 28-35.



12

SPE 159494

Table 1. Twenty two reservoir oils characterized in this research and converged fr, fp, and f;, values using the
new characterization method

oil MW °API Reservoir No. of fr fp f
No References (gm/mol) Temperature  Density Data
) (K) (kin Eq.9)

1 Quifiones-Cisneros et al. (2005), Oil-8 443.08 9.50 322.05 13 217147  1.73400 0.359
2 Quifiones-Cisneros et al. (2005), Oil-7 431.59 11.63 322.05 12 1.75256  1.64495 0.368
3 Quifiones-Cisneros et al. (2004a), Oil-6 377.88 13.38 322.05 13 297104  1.82457 0.246
4 Quiniones-Cisneros et al. (2004a), Oil-5 422.94 11.98 322.05 13 1.86036 1.65916 0.379
5 Quifiones-Cisneros et al. (2004a), Oil-1 170.59 20.81 330.40 16 3.02971  1.78694 0.406
6 Quiniones-Cisneros et al. (2004b), Oil-8 182.05 24.25 333.15 16 2.93681 1.91583 0.429
7 Quifiones-Cisneros et al. (2004b), Oil-7 159.99 29.24 330.40 16 2.38392 1.74502 0.440
8 Quifiones-Cisneros et al. (2004b), Oil-6 118.18 35.61 346.15 5 2.13263 1.71679 0.434
9 Quiniones-Cisneros et al. (2004b), Oil-5 130.55 28.30 337.85 3 2.99111  1.85084 0.453
10 Quifiones-Cisneros et al. (2004b), Oil-4 114.57 33.35 337.85 6 2.53622 1.74607 0.493
11 Quifiones-Cisneros et al. (2004b), Oil-3 87.80 40.46 337.25 5 242193 1.65192 0.554
12 Quifiones-Cisneros et al. (2004b), Oil-2 89.83 47.63 366.45 11 2.15660 1.47331 0.540
13 Quifiones-Cisneros et al. (2004b), Oil-1 86.57 60.18 427.60 13 1.43504 1.18242 0.642
14 Qil* 296.90 22.60° 357.50 13 2.31403  1.62078 0.309
15 Coats and Smart (1986), Oil-1 123.79 34.04 355.37 8 2.71743  1.85304 0.402
16 Coats and Smart (1986), Oil-6 83.31 55.73 385.37 20 214293  1.45227 0.453
17 Coats and Smart (1986), Oil-7 113.60 47.09 328.15 20 1.97029 1.46148 0.499
18 Quifiones-Cisneros et al. (2003), Oil-5 240.24 20.19 345.93 15 1.57415 1.56712 0.585
19 Quifiones-Cisneros et al. (2003), Oil-4 167.03 25.70 344.95 11 2.15396 1.67997 0.588
20 Quifiones-Cisneros et al. (2003), Oil-3 114.65 34.24 337.85 12 2.084838 1.60514 0.616
21 Cullick et al. (1992), Light Oil 105.28 43.68 377.59 8 211704  1.56141 0.414
22 Pedersen et a. (1992), Fluid-1 124.57 35.73 344.75 8 1.91030  1.54935 0.615

This is an actual oil, but the source is not mentioned for confidentiality.
*As reported. All other densities are calculated values.

Table 2. Fluid model for oil 3 developed using the new characterization
method with 11 components.
Components Mole MW Tc Pc Ve w
Fractions (gm/mol) (K) (bars) (cc/mol)
N, 0.0004 28.02 12620  33.90 89.80 0.0400
CO; 0.0216 44.01 30420  73.80 94.00 0.2250
Cs 0.1992 16.04 190.60  46.00 99.00 0.0080
C, 0.0011 30.07 30540  48.84 148.00 0.0980
Cs 0.0002 44.10 369.80  42.46 203.00 0.1520
Cus 0.0010 67.94 453.70  35.12 283.50 0.2357
Cs 0.0021 86.18 508.00  30.31 370.00 0.3005
PC1 0.3389 275.45 1003.02  21.25 805.80 0.2133
PC2 0.2015 463.51 1074.04  14.88 1951.96 0.3962
PC3 0.1430 652.65 1107.19  11.68 3834.48 0.5671
PC4 0.0910 1025.86 1138.37 8.40 7984.38 0.8356
Temperature (K) 322.05
Saturation Pressure (bars) 47.23

Table 3. Fluid model for oil 3 developed using the conventional characterization
method with volume shift with 11 components.
Components Mole MW Tc Pc Ve w Cren
Fractions (gm/mol) (K) (bars) (cc/mol) (cc/mol)
N, 0.0004 28.02 126.20  33.90 89.80 0.0400 -4.23
CO, 0.0216 44.01 304.20 73.80 94.00 0.2250 -1.64
Cy 0.1992 16.04 190.60  46.00 99.00 0.0080 -5.20
C, 0.0011 30.07 305.40 48.84 148.00 0.0980 -5.79
Cs 0.0002 44.10 369.80 42.46 203.00 0.1520 -6.35
Cus 0.0010 67.94 453.70  35.12 283.50 0.2355 -5.53
Cs 0.0021 86.18 508.00  30.31 370.00 0.3004 1.39
PC1 0.4294 226.26 702.850 21.56 1212.59 0.3701 -96.76
PC2 0.1744 532.79 803.872  17.25 2357.30 0.4100 -405.20
PC3 0.1072 853.44 860.001 15.76 3754.90 0.4257 -753.83
PC4 0.0632 1450.93 841.495 14.80 6744.42 0.4330 -1458.94
Temperature (K) 322.05
Saturation Pressure (bars) 47.23
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Table 4. Fluid model for oil 6 developed using the new characterization
method with 11 components.

Components Mole MW Tc Pc Ve w

Fractions (gm/mol) (K) (bars) (cc/mol)

N 0.0002 28.02 126.20  33.90 89.80 0.0400
CO, 0.0096 44.01 304.20 73.80 94.00 0.2250
Cy 0.3203 16.04 190.60  46.00 99.00 0.0080
C, 0.0349 30.07 30540 48.84 148.00 0.0980
Cs 0.0039 44.10 369.80 42.46 203.00 0.1520
Cus 0.0120 64.08 440.95 36.27 283.50 0.2215
Cs 0.0053 86.18 508.00  30.31 370.00 0.3005
PC1 0.2472 175.93 916.16  29.65 358.28 0.2423
PC2 0.1640 265.30 994.85 22.53 867.89 0.3953
PC3 0.1217 357.55 1040.46  18.40 1704.91 0.5423
PC4 0.0810 537.28 1088.36  13.88 3550.06 0.7793
Temperature (K) 333.15
Saturation Pressure (bars) 137.8

0

. Riazi and Al-Sahhaf (1996)

Eq. 4 with f;=1.25 for Aromatics

Eq. 4 with f; =1.40 for Aromatics

Molecular Weight, gm/mol

100 200 300 400 500 600 700 800 900 1000

Table 5. Fluid model for oil 6 developed using the conventional characterization method with
volume shift with 11 components.
Components Mole MW Tc Pc Ve w Cren
Fractions (gm/mol) (K) (bars) (cc/mol) (cc/mol)
N, 0.0002 28.02 126.20  33.90 89.80 0.0400 -4.23
CO, 0.0096 44.01 304.20 73.80 94.00 0.2250 -1.64
C4 0.3203 16.04 190.60  46.00 99.00 0.0080 -5.20
C, 0.0349 30.07 305.40 48.84 148.00 0.0980 -5.79
Cs 0.0039 4410 369.80 42.46 203.00 0.1520 -6.35
Cuys 0.0120 64.08 440.95  36.27 283.50 0.2217 -5.91
Ce 0.0053 86.18 508.00  30.31 370.00 0.3005 1.39
PC1 0.2472 147.787 744734  29.24 693.47 0.3917 -5.91
PC2 0.1640 289.608 871.316 23.07 1142.91 0.4496 -18.45
PC3 0.1217 449.077 944.574 20.15 1732.70 0.5371 -66.56
PC4 0.0810 759.664 1034.300  18.04 3134.73 0.5307 -130.90
Temperature (K) 333.15
Saturation Pressure (bars) 137.8
Table 6. Input parameters used in the 1-D simulation case study
No. of gridblocks 250 Reservoir pressure 200 bars
Grid dimensions 3.05mx3.05mx1.52m Reservoir temperature 333.15K
Permeability 1500 mD Production pressure 200 bars
Porosity 0.15 o
o . Injection pressure 203.45 bars
Initial oil saturation 0.8
Initial water saturation 0.2 Injection gas CH,:C,Hs (50:50)
140
Eq. 4 with f;=1.60 for Aromatics
120

Figure 1. Differences between aromatics and paraffins for critical temperature, Tca-Tcp, based on the correlations of Riazi and Al-
Sahhaf (1996) and Eq. 4. Tca using Eq. 4 assumes three different f; values for aromatics, 1.25, 1.40, and 1.60. Tcp using Eq. 4 uses fr

of 1.0.
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Eq. 5 with f>=3.00 for Aromatics
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and Pan et al. (1997)
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Figure 2. Differences between aromatics and paraffins for critical pressure, Pca-Pcp, based on the correlations of Riazi and Al-Sahhaf
(1996), Pan et al. (1997), and Eq. 5. Pca using Eq. 5 assumes three different fp values for aromatics, 1.75, 2.30, and 3.0. Pcp using Eq. 5

uses fp of 1.0. The correlation of Pan et al. (1997) is used for molecular weight larger than 300 gm/mol.

0.45

Eqg. 6 with f_,=0.60 for Aromatics

Eq. 6 with f;,=0.65 for Aromatics

Riazi and Al-Sahhaf (1996) and
Pan et al. (1997)
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Figure 3. Differences between aromatics and paraffins for the m parameter, mp-mj,, based on the correlations of Riazi and Al-Sahhaf
(1996), Pan et al. (1997), and Eq. 6. The m parameter is defined in Eqgs. 2 and 3. m, using Eq. 6 assumes three different f,, values for
aromatics, 0.60, 0.65, and 0.70. mp using Eq. 6 uses f,, of 1.0. The correlation of Riazi and Al-Sahhaf (1996) is used for mp, and the

correlation of Pan et al. (1997) is used for ma.
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Figure 4. Convergence behavior for the € function (Eq. 13) with f,,, for oils 5, 6, and 9 given in Table 1. The regression algorithm (Fig.
A.2) finds an optimum set of fr, fp, and f;,, at the minimum shown for each oil.
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Figure 5. The converged f; values for the 22 different oils in Table 1. The regression algorithm (Fig. A.2) starts with fr =1.0, and
searches for an optimum f; in the increasing direction. Perturbation of fr from 1.0 qualitatively represents deviation of a plus fraction

from a n-alkane mixture.
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Figure 6. The converged fp values for the 22 different oils in Table 1. The regression algorithm (Fig. A.2) starts with fp =1.0, and
searches for an optimum f; in the increasing direction. Perturbation of fp from 1.0 qualitatively represents deviation of a plus fraction

from a n-alkane mixture.

1.2

-
(=]

o
-]
T

*e

Converged Values for f
o o
» o
T

* *

-
* -
*

*

oS
[N]

0.0

0 10 20 30 40 50 60 70
API Gravity, degrees

Figure 7. The converged f,, values for the 22 different oils in Table 1. The regression algorithm (Fig. A.2) starts with f,, based on Eq. 7,
and searches for an optimum f,, in the increasing direction. Perturbation of f,, from 1.0 qualitatively represents deviation of a plus

fraction from a n-alkane mixture.
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Figure 8. Two-phase P-T diagrams for a mixture of oil 6 10% and C, 90% based on the new characterization method (NM) and the
conventional characterization method with volume-shift parameters (CM,,V). The 11-component models for oil 6 are given in Tables 4
and 5. The pseudo data are generated using the conventional method without using volume shift parameters (CM,,,V) with 30

components.

Figure 9. Three-phase P-T diagrams
for oil 6 are given in Tables 4 and 5.
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for a mixture of oil 6 10% and C, 90% based on the NM and the CM,,V. The 11-component models

The pseudo data are generated using the CM,,,V with 30 components.
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Figure 10. Two-phase P-T diagrams for a mixture of oil 6 10% and C; 90% based on the NM and the CM,,V. The 11-component models

for oil 6 are given in Tables 4 and 5. The pseudo data are generated using the CM,,,V with 30 components.
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Figure 11. Three-phase P-T diagrams for a mixture of oil 6 10% and C; 90% based on the NM and the CM,V. The 11-component
models for oil 6 are given in Tables 4 and 5. The pseudo data are generated using the CM,,,V with 30 components.
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Figure 12. P-x diagrams for the 0il-6/C; pseudo binary pair at 333.15 K based on the NM and CM,,V with 11 components. The 11-
component models are given in Tables 4 and 5. The pseudo data are generated using the CM,,;,V with 30 components.
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Figure 13. P-x diagrams for the 0il-6/C, pseudo binary pair at 333.15 K based on the NM and CM,,V with 11 components. The 11-
component models are given in Tables 4 and 5. The pseudo data are generated using the CM,,,V with 30 components.
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Figure 14. P-x diagrams for the 0il-6/CO, pseudo binary pair at 333.15 K based on the NM and CM,V with 11 components. The 11-
component models are given in Tables 4 and 5. The pseudo data are generated using the CM,,,V with 30 components.
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Figure 15. Saturated liquid densities for mixtures of oil 6 and the equimolar C4-C, mixture at 333.15 K. The 11-component models
based on the NW and the CM,,V are given in Table 4 and 5, respectively. The pseudo data are generated using the CM,,,,V with 30
components.
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Figure 16. T-x diagrams for the 0il-3/Cs pseudo binary pair at 34.47 bars. The 11-component models based on the NW and the CM,,V
are given in Table 2 and 3, respectively. The pseudo data are generated using the CM,,,,V with 30 components.
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Figure 17. T-x diagrams for the 0il-3/Cs pseudo binary pair at 60.00 bars. The 11-component models based on the NW and the CM,,V
are given in Table 2 and 3, respectively. The pseudo data are generated using the CM,,,,V with 30 components.
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Figure 18. Two-phase PT diagrams for mixtures of oil 3 and C¢ at four different C; mixing ratios, 0.1, 0.3, and 0.4. At the C¢ mixing
ratio of 0.4, there is no two-phase region at 60.0 bars, which can be also seen in Fig. 17.
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Figure 19. Comparison of MMP calculations for 18 oils in Table 1 based on the NM with 11 components and the CM,,,V with 30
components. The injection gas is pure methane. The MMPs for 18 oils are calculated at their own reservoir temperatures, which are
different from one another. The two trend lines for the NW with 11 components and the CM,,,V with 30 components almost overlap

each other.
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Figure 20. Comparison of MMP calculations for 18 oils in Table 1 based on the CM,V with 11 components and the CM,,,,V with 30
components. The injection gas is pure methane. The MMPs for 18 oils are calculated at their own reservoir temperatures, which are
different from one another. The two trend lines for the CM,,V with 11 components and the CM,,,,V with 30 components deviate from

each other as the API gravity becomes smaller.
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Figure 21. Comparison of MMP calculations for 18 oils in Table 1 based on the NM with 11 components and the CM,,,V with 30
components. The injection gas is pure CO,. The MMPs for 18 oils are calculated at their own reservoir temperatures, which are
different from one another. The two trend lines for the NW with 11 components and the CM,,,V with 30 components are close to each
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Figure 22. Comparison of MMP calculations for 18 oils in Table 1 based on the CM,,V with 11 components and the CM,,,,V with 30
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Figure 23. Oil recovery predictions in 1-D oil displacement simulations based on the NM and CM,,V with 11 components, along with
pseudo data points generated from the CM,,,V with 30 components. Oil 6 is displaced by the equimolar C,/C, mixture at 333.15 K at
200 bars, which is below MMP. Input parameters are given in Table 6. The recovery curves for 0.0-0.3 HCPVI nearly coincide, and

they are not shown.
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Figure 24. Oil saturation profiles at 0.4 HCPVI for the 0il-6 displacement with the equimolar C,/C, mixture at 333.15 K and 200 bars.
Predictions using the NM and CM,V with 11 components are shown along with pseudo data generated from the CM,,,,V with 30

components.
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Figure 25. Concentration profiles for C; at 0.4 HCPVI for the 0il-6 displacement with the equimolar C,/C, mixture at 333.15 K and 200
bars. Predictions using the NM and CM,,V with 11 components are shown along with pseudo data generated from the CM,,,,V with 30

components.
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Appendix-A

Compositional details: molecular weight and mole
fraction of pure and pseudo fractions

v

Step 1: Splitting of C;, fraction with logrithmic distribution method (Pedersen et al . 1983,1984)

v

Step 2: T¢, P¢, and o estimation using Krejbjerg and Pedersen (2006) correlations

v

Step 3: Equal mass fraction based grouping (Pedersen et al. 1984), resulting in m pseudo components
for an EOS model with total n components. In this work m is 4 for CM,,V and 22 for CM,,,V

) 1

v 1
. PVT Data Input:
Step 4: Regression of T, P, , Saturation Pressure
€—| V,, and o using experimental » | Density
data Viscosity
v
Peng Robinson (1978) Peng Robinson (1978)
without Peneloux volume shift with Peneloux volume shift
T¢, P, and o regression using T, P¢, and o regression using
saturation pressure data saturation pressure data
Regression  in sequence of Tq(n), Te(n- . .
i . Regression in sequence of T(n), T(n-
D), TemH-m); o), o@-1),..., o (+1-m); I)E To(nt1-m); g(n)’ w(n_l)"ﬂ - (rf+1-
Pc(n), Pe(n-1),...,Po(n+1-m), selecting one at a m);  Pe(n), Pe(n-1),....P(nt1-m), selecting
time to match saturation pressure with 1 to 20% one at Ca ti,mec to mateh Csaturatio;l pressure
vanation. with 1 to 20% variation.

v v

Te, Pc, and o regression using saturation
pressure and liquid phase density data

Peneloux volume shift parameters (Cppy )
regression using liquid phase density data

Regression  in sequence of  [P(n), Pq(n- Regression  of  [Cppy(n),  Cppn(n-1),...,
D),...Pct1-m)]; [Te(n), Te(n-1),... Tem+1-m)J; Cppn(n+1-m)]; to match liquid phase density
and [o(n), ©(@-1),..., ® (n+1-m)], selecting one data with 1 to 50% variation.

group at a time to match saturation pressure and
liquid phase density data with 1 to 20%

variation.
" v
V. regression using viscosity data V. regression using viscosity data
with LBC viscosity model with LBC viscosity model
Regression of [V(n), Ve(n-1),...,Ve(n+1-m)] Regression of [V((n), Ve(n-1),...,V(ntl-
with 1 to 20% variation to match viscosity data. m)] with 1 to 20% variation to match
l viscosity data.
Te, Pe, Ve, and @ ‘ Te, Pe, Ve, and © ‘

Figure A.1. Flow chart for the conventional characterization method (CM) in this research, which is based on Pedersen and
Christensen (2007). The shaded blocks show the input data. For the fluids used in this research, Psar, density, and viscosity data are
used for parameter regression. The CM with volume-shift parameters is referred to as the CM,,V (the right branch of the flow chart).
The CM,,V is the CM without volume-shift parameters (the left branch of the flow chart). See the Introduction section for the

definitions of steps 1-4.
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Compositional details: molecular weight and mole
fraction of pure and pseudo fraction

v

Step 1: Splitting of C,, fraction with Chi -Square distribution method (Quifiones-Cisneros et al.
2003). All pseudo fractions are assigned same mass fraction.

!

Step 2: For pure components standard T, P, and o are used; for pseudo fractions T, P., and m are
estimated using Kumar and Okuno (2012) correlations.

v

of T, Pe, and m is done.

Step 3: Equal mass fraction based grouping (into 4 pseudo components) and weight mean averaging

v

Step 4: Regression of T, P, , V-, and o using experimental data ‘

Starting value of f is given by solution of Eq.7

[ PREos (1978)

Calculate T, P, and m for pseudo
components Eqs. 4, 5, and 6.

&

v

v

v

Calculate saturation

pressure Pgqeyp at temperature
T=0.7T,, using T, P_, and m for
each pseudo component using

Using back calculation,

Experimental Saturation Pressure
Pyyexp [Bar] at Temperature T, [K]
T,..= Reservoir Temperature

v

calculate o from m for each
pseudo components

m £0.9462, Eq. 11

m >0.9462, Eq. 12

Calculate saturation pressure (P,) for
the oil at T, using mole fraction,
molecular weight, T, P, and m for all
components with EoS.

Calculate saturation
pressure at temperature
T=0.7T, for each pseudo
component using ®

Paqs = P 107+

EOS
v
Calculate average of absolute
differences (¢) for all pseudo i
components i.e.e = Zabs(P, -
P,q)/no. of pseudo components
N

e>gat
previous step

Final f;, f;, and f,, used to
calculate T, P, and m

| Viscosity
Data

LBC model is used to tune V
to match viscosity using
PVTsim

Final T¢, P, Vi, and m

d<dat
previous
step

v

Calculate %AD for saturation

pressure =
abs(Psat=Psatexp)

Psatexp

Y=

100

P

£+ Af,

>\ 5

Density Data (p,,) atn
pressure points P, at T

Calculate density (p,,;) for all pressure
point at T, using mole fraction,
molecular weight, T, P, and m for all
components with EoS.

Calculate %AAD for density

Pexp — Pcal
be ()
Labs Pexp

n

100

£, =f, +Af,,

T

v

Figure A.2. Flow chart for the new characterization method (NM) developed in this research. The shaded blocks show the input data.
For the fluids used in this research, Psar, density, and viscosity data are used for parameter regression.



