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Summary
CO2 flooding at low temperatures often results in three or more 
hydrocarbon phases. Multiphase compositional simulation must 
simulate such gasfloods accurately. Drawbacks of modeling three 
hydrocarbon phases are the increased computational time and 
convergence problems associated with flash calculations. Use of a 
reduced method is a potential solution to these problems. 

We first demonstrate the importance of using three-phase flash 
calculations in compositional simulation by investigating difficul-
ties with two-phase equilibrium approximations proposed in the 
literature. We then extend an algorithm for reduced two-phase flash 
calculations to three-phase calculations and show the efficiency 
and robustness of our algorithm. The reduced three-phase flash 
algorithm is implemented in a multiphase compositional simulator 
to demonstrate the speed-up and increased robustness of simula-
tions in various case studies. 

Results show that use of a two-phase equilibrium approxima-
tion in reservoir simulation can result in a complete failure or 
erroneous simulation results. Simulation case studies show that 
our reduced method can decrease computational time significantly 
without loss of accuracy. Computational time is reduced using our 
reduced method because of the smaller number of equations to be 
solved and increased timestep sizes. We show that a failure of a 
flash calculation leads directly to reduced timestep sizes using the 
UTCOMP simulator.

Introduction
Mixtures of reservoir oil and solvent such as CO2 and rich gas can 
exhibit complex phase behavior at low temperatures where a third 
solvent-rich liquid phase can coexist with the oleic and gaseous 
phases (Shelton and Yarborough 1977; Orr et al. 1981; Henry 
and Metcalfe 1983; Turek et al. 1988; Creek and Sheffield 1993). 
Reliable numerical simulation of gasfloods involving such com-
plex phase behavior requires robust phase-equilibrium algorithms 
capable of handling at least three hydrocarbon phases. However, 
most compositional simulators do not attempt to solve for three 
hydrocarbon phases because three-phase-equilibrium calculations 
are more complicated, difficult, and time-consuming than tradi-
tional two-phase-equilibrium calculations.

Nghiem and Li (1986) studied the importance of a third 
hydrocarbon phase in multiphase compositional simulation by 
comparing simulation results with two-phase-equilibrium calcula-
tions to those with three-phase-equilibrium calculations. In their 
simulations with only two-phase-equilibrium calculations, two-
phase calculations are performed even in the three-phase region. 
They concluded that the two-phase-equilibrium approximation 
can be used with little loss of accuracy because the three-phase 
region exists only over a small part of the reservoir. However, their 
conclusion was based on 1D slimtube simulations using only two 
recombined oils from the same field. Several authors later demon-
strated that the proper use of three-phase-equilibrium calculations 
gives simulation results that are significantly different from those 
with two-phase-equilibrium calculations (Khan et al. 1992; Wang 

and Strycker 2000; Guler et al. 2001). Also, as reported by Khan 
(1992) and Wang and Strycker (2000), convergence problems 
can occur when attempting to approximate such low-temperature 
gasfloods using only two-phase-equilibrium calculations, and, in 
some cases, the simulations cannot be completed. In this paper, we 
explain one reason for potential convergence problems associated 
with the two-phase-equilibrium approximation.

To overcome the drawbacks of simulation involving three 
hydrocarbon phases, Fong et al. (1992) proposed another way to 
approximate three-hydrocarbon-phase simulations. They charac-
terized fluids that exhibit three-phase equilibrium in such a way 
that the resulting equation-of-state (EOS) model predicts no three-
phase region. They reported that simulation results with the two-
phase-equilibrium approximation agree well with the field data 
when the minimum miscibility pressure (MMP) simulated with the 
two-phase representation matches the experimentally determined 
MMP. However, as will be discussed in this paper, the approxi-
mation procedure requires significant tuning of EOS parameters. 
Because their approximation procedure has no theoretical basis, 
there is no reason to expect accurate predictions of sweep effi-
ciency, fluid injectivity, and phase properties, for example.

Phase-equilibrium calculations in compositional simulation 
consist of stability analysis and flash calculations. Stability analy-
sis, if performed properly, can determine whether a phase is 
thermodynamically unstable. If that phase is unstable, a flash 
calculation is performed to obtain multiphase properties. The most 
common procedure for stability analysis is based on the station-
ary-point method of Michelsen (1982a). A widely used procedure 
for flash calculations is based on solution of fugacity equations 
for the traditional two-phase case and minimization of Gibbs free 
energy for a case of three or more phases (Michelsen 1982b). A 
flash calculation iteratively solves NC(NP−1) equations, where NP 
is the number of phases and NC is the number of components used 
in the calculations. Stability analysis based on the stationary-point 
method iteratively solves NC equations. Therefore, phase-equi-
librium calculations become more time-consuming as NC or NP 
increases. The increasing computational cost is a significant draw-
back of compositional simulation. Lumping detailed components 
into fewer grouped components can speed up the simulation by 
decreasing NC used in the calculations, but this often deteriorates 
the accuracy of phase-behavior predictions, which is important 
in gasflooding simulations. Using more components in reservoir 
simulation is also suitable for reservoir/surface integrated model-
ing because surface-process simulation typically requires 16–30 
components (Leibovici et al. 2000).

A desirable approach to an efficient simulation is to decrease 
the computational time without loss of accuracy. A reduced 
method that originated with Michelsen (1986) has been studied 
as a potential solution. Variants of Michelsen’s reduced flash 
were extended to handle nonzero binary interaction coefficients 
(Jensen and Fredenslund 1987; Hendriks 1988; Hendriks and 
van Bergen 1992; Kaul and Thrasher 1996; Li and Johns 2006). 
Other previous studies on reduced methods include comparisons 
of algorithms and application to stability analysis (Firoozabadi 
and Pan 2002; Nichita et al. 2002; Pan and Firoozabadi 2003; 
Hoteit and Firoozabadi 2006). Okuno et al. (2009a) developed 
robust and efficient algorithms for stability analysis and flash 
calculations using a reduced method for two hydrocarbon phases. 
They implemented the algorithms in a compositional simulator to 
demonstrate that their reduced method can decrease computational 
time significantly without loss of accuracy. 
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The studies on reduced methods that were mentioned assume that 
only two hydrocarbon phases exist. Nichita et al. (2006) extended a 
reduced method to more than two phases and reported calculation 
results and number of iterations in standalone calculations for three 
different fluids. They did not report the efficiency of their algorithm 
by comparing with other standard algorithms in terms of compu-
tational time. In this paper, we extend the algorithms of Okuno 
et al. (2009a) to three-phase calculations. We also implement them 
in an implicit-pressure/explicit-concentration (IMPEC) multiphase 
compositional reservoir simulator, UTCOMP (Chang et al. 1990), 
to demonstrate the improved efficiency and robustness compared to 
the original UTCOMP. To the best of our knowledge, this is the first 
time a reduced method is implemented in a compositional simulator 
capable of three-phase-equilibrium calculations.

In the following sections, we first demonstrate the importance 
of considering a third hydrocarbon phase in simulation of low-
temperature gasfloods. Then, we present the formulation and algo-
rithm for three-phase flash calculations using a reduced method. 
The algorithm is compared to a standard algorithm in terms of 
efficiency and robustness in standalone calculations. Last, we 
implement the algorithm in UTCOMP and give simulation case 
studies that demonstrate conclusively the efficiency and robustness 
of our reduced method. 

Importance of Considering Three-Phase Flash 
Calculations in Compositional Simulation
In this section, we demonstrate the importance of three-phase-equi-
librium calculations in compositional simulation. We investigate 
difficulties with several procedures for two-phase-equilibrium 
approximations that have been proposed in the literature to avoid 
performing three-phase calculations.

Use of Two-Phase Flash in a Three-Phase Region. Nghiem and 
Li (1986) proposed to use only two-phase-equilibrium calcula-
tions to approximate complex reservoir simulations where three 
hydrocarbon phases can coexist. There are multiple solutions for a 
two-phase fl ash calculation in a three-phase region. For oleic (L1), 
solvent-rich liquid (L2), and gaseous (V) phases, a simple combi-
natorial analysis leads to three possible combinations; L1/L2, L1/V, 

and L2/V. However, the possibility of converging to L2/V is small 
because L2/V equilibrium occurs within a small region at very high 
solvent mole fractions on a pseudobinary pressure-concentration 
(P-x) diagram for oil and solvent. For example, L2/V equilibrium 
occurs for solvent mole fractions greater than 0.99 on the P-x 
diagram studied by Turek et al. (1988). Therefore, a two-phase 
solution is likely to be L1/L2 or L1/V.

Which of the two possible solutions is obtained by a two-phase 
flash calculation in the three-phase region depends on the overall 
composition. To see this, we consider a ternary mixture consist-
ing of CO2, C1, and n-C20. The properties of the ternary mixture 
are shown in Table 1. Fig. 1 shows the tie-triangle at 40°F and 
1,000 psia calculated by using the Peng-Robinson EOS (Peng and 
Robinson 1976). The three vertices represent fixed equilibrium 
compositions of the gaseous (V), oleic (L1), and CO2-rich liquid 
(L2) phases. A false two-phase solution depends on the overall 
composition within the tie-triangle because there is one degree of 
freedom after temperature and pressure are specified.

We now perform a series of two-phase flash calculations with 
varying overall composition from Point A (0.655, 0.219) to Point C 
(0.737, 0.135), as shown in Fig. 1. The tie-line found by two-phase 
flash calculations at Point A must result in the L1/V phases because 
it lies on the boundary of the tie-triangle. For the same reason, the 
two-phase flash at Point C must result in L1/L2 phases. Thus, for 
flash calculations from Points A to C, there must be a composition 
that discontinuously changes from the L1/V tie-line to the L1/L2 
tie-line. This is given by Point B in Fig. 1, where both intensive 
and extensive properties of the phases discontinuously change. For 
example, compressibility factors and phase mole fractions for the 
two phases are shown in Fig. 2. The compressibility factor of the 
gaseous phase exhibits a significant change from 0.474 to 0.208. 
To see the effect of the discontinuity on reservoir simulation, we 
calculate the saturation of phase j as Sj = �jZj/�i�iZi, where i = 1, …, 
NP and �j and Zj are the phase mole fraction and compressibility 
factor of phase j, respectively. The variation of the oleic-phase 
saturation for the fictitious two-phase system is shown in Fig. 3. 
The oleic-phase saturation discontinuously varies from 0.55 to 
0.70. Oscillations in physical properties caused by the discontinu-
ous changes of flash-calculation solutions were observed by Khan 

TABLE 1—PROPERTIES OF THE TERNARY MIXTURE 

Mole Fraction (Mol %) Tc (°F) Pc (psia) Acentric Factor BIC* 

CO2 70 87.89 1,069.87 0.225 0.00 
C1 20 116.59 667.20 0.008 0.12 
n-C20 10 920.93 161.66 0.907 0.10 

* All others are 0.0. 

Fig. 1—Tie-triangle for the ternary mixture given in Table 1 at 40°F and 1,000 psia using the Peng-Robinson EOS. Left: Overall 
compositions and initial estimates for two-phase flash calculations in the three-phase region. Right: Resulting two-phase flash 
calculations in the three-phase region for those overall compositions.
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et al. (1992) in their simulations using only two-phase-equilibrium 
calculations in the three-phase region. The discontinuity also 
causes substantial reductions in timestep sizes and often stops the 
simulation from proceeding, as shown in Fig. 3. 

Nghiem and Li (1986) attempted to select L1/L2 solutions during 
their simulations in the three-phase region by using initial esti-
mates for K-values between the L1 and L2 phases from the previous 
timestep. However, if the overall composition is located between 
Point A and a point (0.696, 0.177) near Point B, the two-phase 
flash calculation converges to the L1/V solution even if the K-values 
between L1 and L2 are provided as the initial estimate. That is, their 
procedure does not guarantee avoidance of this discontinuity. 

Two-phase flash calculations in a three-phase region can also 
be performed as a preconditioning step for three-phase flash cal-
culations. However, stability analysis can provide a good initial 
estimate for subsequent three-phase flash calculations.

Two-Phase EOS Representation of Three-Phase Behavior. Fong 
et al. (1992) presented fl uid-characterization procedures for a 
two-phase EOS model that can be used in reservoir simulation to 
approximate three-phase behavior of mixtures of CO2 and low-
temperature reservoir oil. Their fl uid-characterization approach 
attempts to eliminate the three-phase region on the P-x diagram 
for the oil and CO2. Their motivation was that the approximation 
could avoid long computational time spent in phase-equilibrium 
calculations, convergence problems associated with three-phase 
fl ash calculations, and use of a four-phase relative permeability 
model. They compared two characterization procedures, which are 
different only in what portion of the P-x diagram is matched by tun-
ing binary interaction coeffi cients (BICs) of CO2 to experimental 

data. Their fi rst procedure, A, is to match the boundary between 
L1/V and L1 at low CO2 mole fractions. Their second procedure, B, 
is to match the boundary between L1/V and L1 at high CO2 mole 
fractions for a two-phase representation with the upper boundary 
of the L1/L2/V region. Procedure B eliminates not only the L1/L2/V 
region but also the L1/L2 region. 

On the basis of the comparisons between Procedures A and 
B and slimtube data, they concluded that Procedure B is supe-
rior to Procedure A for approximating three-hydrocarbon-phase 
simulation. However, their procedure, although novel, has little 
theoretical basis and may provide inaccurate simulation results, 
such as sweep efficiency, fluid injectivity, and phase properties. 
For example, the recovery curves from their slim-tube simulations 
with the North Ward Estes (NWE) oil using Procedures A and B 
did not exhibit the sharp bend at breakthrough as observed in the 
slimtube test.

We demonstrate the use of their characterization procedures 
by considering 1D displacement of the NWE oil with impure 
CO2, for which the component properties are taken from Khan 
et al. (1992), as shown in Table 2. Fig. 4 shows the predicted P-x 
diagram at the reservoir temperature of 83°F and the three-phase 
region on the pressure/temperature (P-T) diagram at several oil and 
gas mixtures. In the P-x diagram, an L1/L2/V region exists between 
1,050 and 1,350 psia at solvent mole fractions greater than 0.65. 
The critical point of the injection gas is 81°F and 1,115 psia, and 
there is no phase boundary at the reservoir temperature of 83°F for 
the injection gas (i.e., at the solvent mole fraction of 1.0 in the P-x 
diagram). The P-T diagram shows that the maximum temperature 
for existence of the three-phase region is 93°F at a solvent mole 
fraction of 0.90. 

Fig. 2—Left: Variation of compressibility factors for the two-phase solutions with changing overall composition from Compo-
sition A to C as shown in Fig. 1. Right: Variation of phase mole fractions for the two-phase solutions with changing overall 
composition.

Fig. 3—Left: Variation of saturation for Phase L with changing overall composition assuming two-phase equilibrium. Right: 
Timestep-size behavior during a simulation using only two-phase flash calculations in the three-phase region.
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Starting with the original fluid characterization shown in Table 
2, we obtain the following BICs of CO2 by using Procedure A: 0.2 
for CO2/C1, CO2/C2–3, CO2/C4–6, and CO2/C7–14 and 0.0 for CO2/
C15–24 and CO2/C25+. The P-x diagram at 83°F using Procedure A is 
compared with the original in Fig. 5. The boundary between L1/V 
and L1 at low solvent mole fractions is almost identical with the 
original. Fig. 5 also shows the three-phase region on the P-T dia-
gram at different solvent mole fractions. Because the three-phase 
envelopes do not intersect the reservoir temperature of 83°F, there 
are no three-phase regions in the P-x diagram at 83°F. Changes in 
BICs of CO2 affect the phase-behavior predictions of oil very little 
because CO2 mole fraction is small in the oil. For example, Fig. 6 

shows that the P-T diagram from the original characterization 
coincides with that from Procedure A.

Reservoir properties for the 1D simulation are shown in Table 3. 
An injector at the first cell is operated at a constant injection rate 
of 750 scf/D, and a producer at the last cell produces at a constant 
bottomhole pressure of 900 psia. The total variation diminishing 
higher-order scheme of Liu et al. (1994) in UTCOMP is used to 
control numerical dispersion in our simulations. 

Fig. 6 shows the recoveries using the original fluid character-
ization of Khan et al. (1992) and Procedure A. The former is 27% 
higher than the latter after 2.0 hydrocarbon pore volumes injected 
(HCPVI). That is, displacement efficiency can be underestimated 

TABLE 2—FLUID PROPERTIES FOR SIMULATIONS WITH THE NWE OIL* 

Oil (Mol %) Gas (Mol %) Molecular Weight TC (°F) PC (psia) Acentric Factor BIC** CO2 h g 

CO2 0.77 95.0 44.01 87.89 1069.87 0.225 0.00 1.0 1.00
 

C1 20.25 5.0 16.04 116.59 667.20 0.008 0.12 0.0 0.12
 

C2–3 11.80 0.0 38.40 158.88 653.37 0.130 0.12 0.0 0.12
 

C4–6 14.84 0.0 72.82 379.87 485.94 0.244 0.12 0.0 0.12
 

C7–14 28.63 0.0 135.82 625.86 351.54 0.600 0.09 0.0 0.09
 

C15–24 14.90 0.0 257.75 861.15 261.51 0.903 0.09 0.0 0.09
 

C25+ 8.81 0.0 479.95 1202.09 250.31 1.229 0.09 0.0 0.09
 

* From Khan et al. (1992) 
** All others are 0.0. 

Fig. 4—Left: P-x diagram at 83°F for the NWE oil and injection gas (solvent) given in Table 2. Right: P-T diagrams for mixtures 
of the NWE oil and injection gas given in Table 2 for different oil/gas mixtures.
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Fig. 5—Left: Comparison of P-x diagram at 83°F from Procedure A with that from the original characterization for the NWE 
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significantly when Procedure A is used. Also, Procedure A does not 
necessarily avoid the three-phase calculations, as was originally 
assumed by Fong et al. (1992). When we allow for three-phase-
equilibrium calculations in the simulation with Procedure A, three 
hydrocarbon phases exist over a few consecutive grid cells near 
the displacement front during the simulation. This is because Pro-
cedure A attempts to eliminate a three-phase region only on a P-x 
diagram, which represents phase behavior along the mixing line 
between the oil and injection gas, instead of the actual composi-
tion path observed during the displacement. As long as three-phase 
regions exist and only two-phase-equilibrium calculations are 
performed in the simulation, convergence problems can stop the 
simulation from proceeding as discussed in the previous section, 

even though convergence problems do not occur in this particular 
case. Therefore, Procedure A leads either to a complete failure of 
simulation or to erroneous simulation results.

We now consider Procedure B by starting with the original 
characterization in Table 2. We could not, however, achieve a good 
match using Procedure B. Although Fong et al. (1992) were able to 
apply the procedure starting with a different fluid characterization, 
there are no EOS parameters presented in their paper. Procedure B 
likely cannot be applied in some situations because, as described 
later, it requires a significant deviation from the original charac-
terization for three-phase behavior. 

Fig. 7 shows projections of the P-T-x diagram onto P-T and 
T-x diagrams for the pseudobinary mixture of the NWE oil and 

TABLE 3—RESERVOIR PROPERTIES FOR 1D SIMULATION WITH THE NWE OIL 

Dimensions 500 5 10 ft 
Number of grid cells 100 1 1 

Porosity 0.15 
Permeability 30 md 

Initial pressure 1,000 psia 
Reservoir temperature 83 °F 

Relative permeability model Corey 
Residual saturation (W/L1/G/L2*) 0.4/0.2/0.05/0.05 

Endpoint relative permeability (W/L1/G/L2*) 0.35/0.50/0.65/0.65 
Exponent (W/L1/G/L2*) 3.0/3.0/3.0/3.0 

Initial saturation (W/L1/G/L2*) 0.4/0.6/0.0/0.0 

*W: aqueous phase; L1: oleic phase; G: gaseous phase; L2: CO2-rich liquid phase. 
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Fig. 6—Left: Comparison of P-T diagram from Procedure A with that from the original characterization for the NWE oil. Right: 
Recoveries for 1D simulations with characterization Procedure A and the original characterization for the NWE oil.
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pseudobinary mixture of the NWE oil and injection gas given in Table 2.
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injection gas. On the P-T diagram, the binodal curve for 100% oil 
is shown, but that for 100% gas is not shown for clarity. On the 
T-x diagram, the critical locus up to 22,938 psia at a solvent mole 
fraction of 0.85 is shown. This type of phase behavior in Fig. 7 
is analogous to that for binary systems CO2+n-alkane from n-C14 
through n-C21 in that L1/L2/V equilibrium exists and the critical 
locus of L = V critical points gradually changes its behavior to 
L1 = L2 (Alwani and Schneider 1976; Miller and Luks 1989). Proce-
dure B attempts to obtain phase behavior similar to binary systems 
CO2+n-alkane from C1 through n-C6, which exhibit a continuous 
L = V critical locus between two critical points for the pure com-
ponents with neither L1/L2/V nor L1/L2 equilibrium. The former type 
of phase behavior is categorized as Type III and the latter as Type 
I, according to van Konynenburg and Scott (1980), who introduced 
the classification of fluid-phase behavior for binary mixtures on the 
basis of the van der Waals EOS. The difference between the phase-
behavior types for CO2+n-alkane binary systems comes from the 
difference in the carbon number or chain length of the n-alkane 
molecule. Considering that the NWE oil contains a large amount 
of components with much larger carbon numbers than n-C6, Pro-
cedure B should be difficult to apply to the NWE oil.

Reduced Method for Three-Phase Flash 
Calculations
Three-phase-equilibrium calculations are important in simulation 
of low-temperature gasfloods. However, the computational time 
required and robustness of the calculations have led several authors 
to make two-phase-equilibrium approximations. The use of a 
reduced method is a potential practical solution. For miscible-gas 
simulations involving only L/V equilibrium, Okuno et al. (2009a) 
demonstrated that a reduced method gives significant savings in 
computational time with improved robustness. In this section, we 
extend their reduced flash algorithm to three-phase calculations. 
We use the same stability analysis algorithm as in Okuno et al. 
(2009a) because stability analysis is performed only on a single-
phase mixture or one of the individual phases of a multiple-phase 
mixture (Perschke et al. 1989).

In this section, we first present the reduced parameters used 
in this method. We then derive the formulation for NP-phase flash 
calculations using the reduced method and present an algorithm 
to solve the formulated problem. We also compare the efficiency 
and robustness of the reduced flash with those of the minimization 
of the Gibbs free energy of Perschke et al. (1989) for three-phase 
standalone calculations.

Reduced Parameters. The Peng-Robinson EOS is used with the 
van der Waals mixing rules throughout this paper, although any 
cubic EOS can be used. To handle nonzero BICs, Li and Johns 
(2006) introduced two sets of component-specifi c parameters, hi 
and gi, to replace BICs: kij = (hi−hj)

2gigj, where i, j = 1, …, NC. 
The parameters hi and gi can be considered as fi tting parameters 
to represent the BICs or, better yet, to match pressure/volume/
temperature (PVT) data directly. As long as the characterized fl uid 
model using the parameters hi and gi can predict the phase behav-
ior accurately, the reduced phase-equilibrium calculations are as 
accurate as the conventional calculations. The reduced parameters 
are defi ned as

� �kj ki iji

N
xC=

=∑ 1
,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

where �i i i i i i i i i i iB A A h g A h g A g j= ( ) =, , , , , ,...2 1 ,,NP

and k = 1, …, 5.
Fugacity coefficients for a phase can be expressed as func-

tions of the five reduced parameters for the corresponding phase. 
As described later, the number of independent variables for the 
reduced flash is 6(NP−1) compared to NC(NP−1) for the conven-
tional flash calculations. That is, the number of equations to be 
solved in the reduced flash does not depend on NC used in the 
calculations. Therefore, the reduced flash can decrease the number 

of equations to be solved when more than six components are used 
in the calculations. This is often the case in compositional simula-
tion, especially when the phase behavior is complex. 

The reduced number of equations can be exploited when 
Newton’s method is used as the solution technique. In this research, 
the reduced method is initiated by the conventional successive 
substitution (SS) both for stability analysis and for flash calcula-
tions and is followed by Newton’s method. Use of SS first and 
Newton’s method next is commonly applied in compositional 
reservoir simulation because Newton’s method converges quadrati-
cally only when a good initial estimate of the parameters is given. 
SS is linearly convergent within a larger region of convergence 
compared to Newton’s method.

An alternative procedure to obtain reduced parameters is to 
approximate a BIC matrix using the spectral expansion (Hen-
driks and van Bergen 1992). In a reduced method based on the 
spectral expansion, the minimum number of reduced parameters 
for accurate phase-behavior predictions depends on the values 
of BICs as shown by Firoozabadi and Pan (2002). Nichita et al. 
(2006) stated that a reduced method using the spectral expansion 
is effective only if a BIC matrix has only few nonzero eigenvalues. 
The reduced method using the parameters of Li and Johns (2006) 
is more accurate than that using the spectral expansion because 
parameters h and g for the former can be used directly in EOS 
fluid characterization to match PVT data. Although we use the 
reduced parameters of Li and Johns (2006) in this paper, the solu-
tion techniques for a reduced method presented in this paper and 
Okuno et al. (2009a) can also be applied using reduced parameters 
from the spectral expansion. 

Three-Phase Flash Calculations Using a Reduced Method. For 
a fl ash calculation at a given temperature and pressure, the solution 
must be the global minimum of the Gibbs free energy in composi-
tion space. The fi rst-order necessary condition for a minimum of 
the Gibbs free energy leads to the following fugacity equations:

F x xij ij ij iN iNP P
= − =ln ln� � 0 ,  . . . . . . . . . . . . . . . . . . . . . . . . (2)

where i N j NC P= = −( )1 1 1,..., ,...,and .
In Eq. 2, phase NP is the reference phase. The fugacity equations 

must be satisfied with the following material-balance equations:

z xi j ijj

NP=
=∑ �

1
, � jj

NP

=∑ =
1

1 , and xiji

NC

=∑ =
1

1 ,  . . . . . . . . . . (3)

where i = 1,…,NC and j = 1,…,NP. 
We define Kij = xij/xiNP for i = 1, …, NC and j = 1, …, (NP−1). 

Nghiem and Li (1984) solved Eqs. 2 and 3 for 2NC independent 
variables, lnKi1 and lnKi2 (i = 1, …, NC), for their three-phase flash 
calculations. Rearranging Eq. 2, K-values become functions of 5NP 
reduced parameters.

Kij iN N ij jP P
= ( ) ( )� � � � ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

where i N j NC P= = −( )1 1 1,..., ,...,and . 
Considering Eq. 3, the reduced parameters for the reference 

phase NP can be expressed using reduced parameters and phase 
mole fractions for the other (NP−1) phases.
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= −( )=

−∑ 1

1
,   . . . . . . . . . . . . . . . . . . . . . . . (5)

where � �k
z

ki ii

N
z kC= =

=∑ 1
1 5and ,..., .

Then, K-values in Eq. 3 can be considered as functions of 
6(NP−1) variables. Once K-values are calculated, phase composi-
tions are computed directly as

x z t x K xiN i i ij ij iNP P
= =and ,  . . . . . . . . . . . . . . . . . . . . . . . . . (6)
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where t K i Ni ij jj

N

C
P= − −( )⎡

⎣
⎤
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=

−∑1 1 1
1

1
� , ,...,  and j NP= −( )1 1,..., . 

The rearrangement of the original flash formulation confirms 
that phase properties can be viewed as functions of 6(NP−1) 
independent variables �kj and �j, where k = 1, …, 5 and j = 1, …, 
(NP−1).

The reduced flash equations to be solved for the 6(NP−1) inde-
pendent variables are

F x m k jm
R

kj ki iji

NC= − = = ×
=∑� �

1
0 for

and

F x x m N jm
R

iN iji

N

PP

C= −( ) = = −( ) +
=∑ 1

5 10 for ,  . . . . . . . . . (7)

where k = 1, …, 5 and j = 1, …, (NP−1). Eq. 7 includes the mul-
tiphase Rachford-Rice equations (Rachford and Rice 1952) to 
satisfy the material-balance equations. The Jacobian matrix is of 
size 6(NP−1)×6(NP−1), independent of NC used in the calculation. 

The algorithm to solve Eq. 7 is an extension of the algorithm 
of Okuno et al. (2009a) for two-phase calculations. The reduced 
flash starts with an initial estimate from the conventional SS. The 
algorithm is the following:

1. Calculate �k
z (k = 1, ..., 5) as defined in Eq. 5.

2. Obtain initial estimates for the 6(NP−1) independent vari-
ables, �kj and �j (k = 1, …, 5 and j = 1, …, NP−1), based on the 
solution from SS and Eq. 1.

3. Calculate the reduced parameters for the reference phase 
NP using Eq. 5.

4. Calculate compressibility factors and fugacity coefficients 
for the NP phases using an EOS. When the cubic EOS has multiple 
roots of the compressibility factor, the correct root is selected that 
results in the lowest Gibbs free energy (Evelein et al. 1976).

5. If maxij{|Fij|} < �, then stop. Otherwise, continue to Step 6.
6. Calculate K-values using Eq. 4 on the basis of the fugacity 

coefficients in Step 4.
7. Calculate compositions for the NP phases using Eq. 6.
8. Calculate the residuals of Eq. 7.
9. Construct the 6(NP−1)×6(NP−1) Jacobian matrix analytically 

[see Okuno (2009)] and solve the system of equations.
10. Update the 6(NP−1) independent variables �kj and �j (k = 

1, …, 5 and j = 1, …, NP−1).
11. Repeat Steps 3, 4, and 6 to obtain a new set of K-values.
12. Solve the multiphase Rachford-Rice equations to obtain 

phase compositions, xij, and mole fractions, �j (i = 1, …, NC and 
j = 1, …, NP), using the algorithm of Okuno et al. (2009b).

13. Update the independent variables �kj and �j (k = 1, …, 5 
and j = 1, …, NP−1) using Eq. 1.

14. Go to Step 3.
The preceding algorithm updates the independent variables 

twice during one iteration. The first update is Newton’s method, 
and the second is an SS step (Steps 11 through 13). This additional 
SS step is also used by Okuno et al. (2009a) only for extremely 
difficult cases for a two-phase flash where overall compositions are 
very near the binodal curve in the critical region. We recommend 
that it always be used for three-phase calculations.

The stopping criterion for the algorithm is based on the fugac-
ity equations, Eq. 2, instead of the RF equations, Eq. 7, because 
the scale of the residual for Eq. 2 can be significantly different 
from that of Eq. 7. The criterion based on the fugacity equations 
is thermodynamically more fundamental than that based on the 
RF equations, Eq. 7. 

Standalone Three-Phase Flash Calculations
We now demonstrate the efficiency and robustness of the RF algo-
rithm for three-phase calculations. We compare the RF algorithm 
with the method of minimization of the Gibbs free energy (MG) 
of Michelsen (1982b), which was implemented in UTCOMP by 
Perschke et al. (1989). MG minimizes the Gibbs free energy in 
terms of NC(NP−1) component mole numbers of the independent 
phases. The algorithm is based on Newton’s method with a line-
search technique, where the modified Cholesky decomposition 
algorithm of Gill and Murray (1974) provides a search direction 
if the Hessian matrix is not positive definite. 

Conventional two-phase flash calculations use root-finding 
of fugacity equations instead of MG. MG, however, is used for 
our comparisons for three-phase flash calculations because of the 
robustness and computational efficiency. MG is more robust than 
root-finding of fugacity equations because MG can ensure that 
the Gibbs free energy is decreased in each iteration step. Okuno 
et al. (2009a) showed that MG can take shorter computational 
time per iteration than root-finding of fugacity equations for two-
phase flash calculations using 10 or more components. Michelsen 
(1982b) recommended using MG for more than two phases, instead 
of root-finding of fugacity equations. 

We consider a flash calculation for a mixture of the Bob Slaugh-
ter Block (BSB) oil and impure CO2. A fluid model was developed 
by Khan et al. (1992) using the Peng-Robinson EOS, as shown 
in Table 4. For this example flash calculation, the temperature 
and pressure are 105°F and 1,295 psia. Table 5 gives the overall 
composition, which is a mixture of the oil and injection gas given 
in Table 4. The calculation starts with stability analysis for a single-
phase mixture. After the stability analysis detects an instability, a 
two-phase flash calculation is performed to obtain an intermedi-
ate two-phase solution. Stability analysis is performed again for 
one of the two phases. The three-phase flash is performed when 
this stability analysis determines that the intermediate two-phase 
system is unstable. The stability analysis also provides an initial 
estimate for the following three-phase flash with the conventional 
SS. SS is switched to Newton’s method for either the RF algorithm 
or MG when maxij{|Fij|} < 10−3. 

This example flash calculation is a difficult case close to a criti-
cal point. Table 5 gives the three-phase solution for this problem. 
The resulting equilibrium compositions for the oleic and CO2-rich 
liquid phases are near each other, indicating that the conditions are 
in a near-critical region. Fig. 8 shows the convergence behaviors of 
the RF algorithm and MG for this example calculation. MG takes 
17 iterations to satisfy the stopping criterion of maxij{|Fij|} < 10−8 
compared to 10 iterations for the RF algorithm. The slow conver-
gence of the initial iterations for both algorithms indicates that the 
switching point from SS to Newton’s method is not sufficiently 

TABLE 4—FLUID PROPERTIES FOR SIMULATIONS WITH THE BSB OIL* 

 Oil (Mol %) Gas (Mol %) Molecular Weight TC (°F) PC (psia) Acentric Factor BIC** CO2 h g 

CO2 3.37 95.0 44.01 87.89 1,069.87 0.2250 0 1.0 1.000 
C1 8.61 5.0 16.04 171.67 667.20 0.0080 0.055 0.0 0.055 
C2–3 15.03 0.0 37.20 159.90 652.56 0.1305 0.055 0.0 0.055 
C4–6 16.71 0.0 69.50 374.13 493.07 0.2404 0.055 0.0 0.055 
C7–15 33.04 0.0 140.96 630.68 315.44 0.6177 0.105 0.0 0.105 
C16–27 16.11 0.0 280.99 892.16 239.90 0.9566 0.105 0.0 0.105 
C28+ 7.13 0.0 519.62 1,236.79 238.12 1.2683 0.105 0.0 0.105 

* From Khan et al. (1992) 
** All others are 0.0. 
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close to the solution to exhibit a second-order convergence rate. 
This convergence behavior is characteristic of phase-equilibrium 
calculations near a critical point. The simple algorithm for RF 
exhibits remarkably improved convergence behavior compared to 
MG, which uses globally convergent techniques such as line search 
to enhance its convergence. 

Total computational time of a flash calculation is determined by 
the number of iterations multiplied by the computational time per 
iteration. The RF algorithm generally takes fewer iterations com-
pared to MG, as shown previously and by Okuno et al. (2009a). 

We next compare computational time per iteration for the RF 
algorithm with that for MG. Computations are performed using 
a Pentium 4 processor running at 3.0 GHz and 2.0 GB of RAM 
throughout this research. The computational time per iteration 

depends on how close the current iteration point is to the solution 
because both the RF algorithm and MG contain an inner iteration 
loop; RF iteratively solves the Rachford-Rice equations, and MG 
performs line-search in an iterative manner inside the outer itera-
tion loop. Fig. 9 shows computational time per iteration for the 
RF algorithm and MG for different NC. When more than seven 
components are used, the heaviest component is split to as many 
components as needed with the same properties. This is also true 
for the simulation case studies to be presented later. The left and 
right plots of Fig. 9 give the time per iteration when switched from 
SS with a criterion of 10−3 and 10−7, respectively. For both cases, 
the RF algorithm is faster than MG, and the advantage of the RF 
algorithm over MG becomes more significant as NC is increased. 
For the former case, the speed-up factor is 2.2 for 10 components 
and 6.3 for 20 components. For the latter case, the speed-up fac-
tor is 2.0 for 10 components and 4.7 for 20 components. Those 
speed-ups of the RF algorithm come from the reduced number of 
equations to be solved. For three phases, the number of equations 
is always 12 for the RF algorithm and 2NC for MG. 

As long as equality kij = (hi−hj)
2gigj holds, the reduced method 

gives exactly the same calculation results as a conventional method 
using binary interaction coefficients. This fact does not depend 
on the number of components used. Tables 2 and 4 show that 
the equality holds for both the NWE and BSB oils. That is, the 
calculation results from the RF algorithm are the same as those 
from MG in the example calculations presented in this paper if the 
algorithms converge to the correct solution. 

Simulation Case Studies With the 
Reduced Method
We implemented and tested our algorithm for the reduced method 
in various runs with UTCOMP to confirm its robustness and effi-
ciency. Two simulation examples are presented in this section.

UTCOMP is an IMPEC multiphase compositional simula-
tor originally developed by Chang et al. (1990). Perschke et al. 

TABLE 5—THREE-PHASE SOLUTION FOR AN EXAMPLE FLASH CALCULATION WITH THE BSB OIL 

 Overall composition Oleic phase Gaseous phase CO2-rich liquid phase 

Phase mole fractions  0.62169 0.17728 0.20103 
CO2 0.57529 0.53522 0.74337 0.55099 
C1 0.07305 0.05410 0.15894 0.05592 
C2–3 0.10297 0.10873 0.07527 0.10957 
C4–6 0.09088 0.10614 0.02086 0.10546 
C7–15 0.10509 0.12903 0.00155 0.12236 
C16–27 0.03792 0.04750 6.2515 10 6 0.04173 

Component mole fractions 

C28+ 0.01480 0.01928 9.0351 10 10 0.01399 

1

1×10–3

1×10–6

1×10–9

1×10–12

Fig. 8—Convergence behaviors of the RF algorithm and the 
MG for an example of a three-phase calculation.

Fig. 9—Comparisons of computational time per iteration for three-phase flash calculations using the RF algorithm and MG. Left: 
When SS is switched to either the RF algorithm or MG with a switching criterion of maxij{|Fij|} < 10−3. Right: When SS is switched 
to either the RF algorithm or MG with a switching criterion of maxij{|Fij|}<10−7.
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(1989) developed the phase-equilibrium algorithms in the original 
UTCOMP. The multiphase-equilibrium calculations in UTCOMP 
consist of stability analysis and flash calculations, for which a flow 
chart is given in Appendix A. The algorithms use accelerated SS 
and minimization of the Gibbs free energy for flash calculations 
and use the stationary-point method and minimization of the tangent 
plane distance function for stability analysis (Michelsen 1982a). 
All the calculations with the original UTCOMP are performed in 
conventional NC space instead of in reduced space. In this research, 
we replace the accelerated SS with the normal SS to start the sec-
ond-order convergence method robustly. We also replace the original 
Rachford-Rice algorithm in UTCOMP with that given by Okuno 
et al. (2009b) because their algorithm is guaranteed to converge to 
the correct solution for any number of phases.

Stability analysis in UTCOMP is based on the procedure of 
Michelsen (1982a) as implemented by Perschke (1988). K-values 
from Wilson’s correlation (1969) are used to generate two-sided 
initial phase compositions (i.e., vapor-like and liquid-like composi-
tions) for stability analysis from one to two phases. For stability 
analysis from two to three phases, four initial estimates are used 
as is explained in Perschke (1988).

We compare the efficiency and robustness of the reduced 
method with those of the original code in UTCOMP for simula-
tions with different fluids, numbers of components, and reservoir 
models. The reduced method uses the algorithms for reduced 
stability analysis (RSA) and RF calculations developed in this 
paper and by Okuno et al. (2009a). The original UTCOMP uses 
the conventional stability analysis (CSA) based on the stationary-
point method and MG for flash calculations, both in conventional 
NC space. In those calculations, the conventional SS initiates the 
second-order convergence methods. The switching criteria from 

SS to the second-order convergence methods are max{|Si|} < 10−3 
for stability analysis and maxij{|Fij|} < 10−3 for flash calculations, 
where Si is stationarity equations to be satisfied at a stationary 
point of the tangent plane distance function (Michelsen 1982a) 
and Fij is defined in Eq. 2. The stopping criteria are max{|Si|} < 
10−8 for stability analysis and maxij{|Fij|} < 10−8 for flash calcula-
tions. In addition, CSA and MG use a relative step-size criterion, 
max{|�	i/	i|} < 10−8, where 	i is the ith independent variable and 
�	i is the updated amount for 	i.

Stability analysis for a single-phase mixture is performed in all 
single-phase grid cells. Flash calculations are performed only for 
grid cells where phase instability is detected by stability analysis. 
The Corey model is used for the relative permeability function. 
The parameters for relative permeability of a solvent-rich liquid 
phase are assumed to be the same as those of a gaseous phase. An 
aqueous phase exists at its residual saturation. The total variation 
diminishing higher-order scheme of Liu et al. (1994) is used to 
control numerical dispersion.

NWE Oil With an Areal 2D Reservoir Model. We consider an 
oil displacement with an injection gas consisting of 5% C1 and 
95% CO2 for 1.2 HCPVI in a quarter of a staggered-line-drive 
pattern. The permeability fi eld is stochastically generated for an 
areal, 2D reservoir model as shown in Fig. 10. The reservoir oil 
is the NWE oil for which a fl uid model using the Peng-Robinson 
EOS was developed by Khan et al. (1992). The properties of the oil 
and injection gas are shown in Table 2. The MMP with pure CO2 
was experimentally determined to be 937 psia at the reservoir tem-
perature of 83°F (Fong et al. 1992). Fig. 4 shows the P-x diagram 
for the reservoir oil and injection gas at the reservoir temperature 
predicted by the EOS model. Table 6 gives the reservoir properties. 

Fig. 10—Left: Permeability field for the simulation case study with the NWE oil in millidarcies. Right: Recovery factors for cases 
(RSA, RF) and (CSA, MG) are almost identical to each other but are different from that with Procedure A.

TABLE 6—RESERVOIR PROPERTIES  
FOR THE SIMULATION CASE STUDY WITH THE NWE OIL 

Dimensions 400 200 10 ft 
Number of grid cells 30 15 1 

Porosity 0.15 
ln mean permeability 24.5 md 

Dykstra-Parsons coefficient 0.59 
Correlation length x: 200 ft  y: 100 ft  z: 10 ft 

Relative permeability model Corey 
Residual saturation (W/L1/G/L2*) 0.4/0.2/0.05/0.05 

Endpoint relative permeability (W/L1/G/L2*) 0.35/0.50/0.65/0.65 
Exponent (W/L1/G/L2*) 3.0/3.0/3.0/3.0 

Initial saturation (W/L1/G/L2*) 0.4/0.6/0.0/0.0 

*W: aqueous phase; L1: oleic phase; G: gaseous phase; L2: CO2-rich liquid phase. 
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The injection well is operated at a constant injection rate of 104 
scf/D, while the production well produces at a constant bottomhole 
pressure of 930 psia. 

Fig. 11 shows saturation distributions and the distribution of the 
number of hydrocarbon phases at breakthrough, which is near 0.5 
HCPVI. At this time, three hydrocarbon phases exist in 20% of the 
total grid cells, so that three-phase-equilibrium calculations play an 
important role in the simulation results. Simulations using (CSA, MG) 
and (RSA, RF) are almost identical with each other (Fig. 10). The 
computational time, however, depends significantly on the algorithm 
used. Table 7 gives a breakdown of the computational times for the 
10- and 20-component cases. The computational time with differ-
ent NC is plotted in Fig. 12 for each algorithm. Use of the reduced 
method results in simulations with shorter computational times than 
when (CSA, MG) is used for all cases studied here. The advantage 
of the reduced method against (CSA, MG) becomes more significant 
as NC increases. For example, the speed-up of the simulations is 12% 
for the 10-component case and 43% for the 20-component case. The 
speed-up is attributed to the decreased computational time in phase-
equilibrium calculations with the second-order convergence methods, 
where the reduced method can exploit the decreased number of equa-
tions to be solved (Table 7). Fig. 12 shows that the Newton iteration 
with (RSA, RF) is 1.6 times and 3.6 times faster than with (CSA, MG) 
for the 10- and 20-component cases, respectively.

We also simulate this oil displacement using (CSA, MG) with 
the fluid characterization from Procedure A of Fong et al. (1992) 
described before (see Fig. 5). Three-phase-equilibrium calculations 
are not performed for this simulation. As expected, simulation 

results are significantly different from those with three-phase-
equilibrium representations. Fig. 10 shows that breakthrough using 
fluid-characterization Procedure A occurs much earlier and that the 
oil recovery can be underpredicted by up to 5%. The deviation in 
recovery for this 2D reservoir simulation is much smaller than that 
for the 1D reservoir simulation shown in Fig. 6, indicating that the 
sweep efficiency is overpredicted using Procedure A. 

Fig. 12 compares the computational times of simulations using 
(CSA, MG) with Procedure A, and (RSA, RF) and (CSA, MG) 
with the three-phase characterization. The computational time for 
the three-hydrocarbon-phase simulation with (RSA, RF) is 68% 
longer for 10 components and 31% longer for 20 components 
compared to the two-hydrocarbon-phase simulation with (CSA, 
MG). That is, the speed-up from using Procedure A becomes less 
significant as more components are used in the simulation. The 
three-hydrocarbon-phase simulation with (RSA, RF) using 10 
components takes less computational time than the two-hydro-
carbon-phase simulation with (CSA, MG) and Procedure A using 
15 components. Similarly, (RSA, RF) using 15 components is 
faster than (CSA, MG) with Procedure A using 20 components. 
Fig. 12 also shows that the Newton iterations for phase-equilib-
rium calculations with (RSA, RF) in the three-hydrocarbon-phase 
simulation are faster than those with (CSA, MG) in the two-
hydrocarbon-phase simulation for 10 or more components. This 
is a consequence of the reduced number of equations to be solved 
for (RSA, RF). For example, when more than 12 components are 
used, two-phase calculations with (CSA, MG) must solve more 
equations than three-phase calculations with (RSA, RF). 

Fig. 11—Top left: Saturation distribution of the oleic phase at 0.5 HCPVI for the NWE oil displacement. Top right: Saturation 
distribution of the gaseous phase at 0.5 HCPVI. Bottom left: Saturation distribution of the CO2-rich liquid phase. Bottom right: 
Distribution of the number of hydrocarbon phases at 0.5 HCPVI.

TABLE 7—BREAKDOWN OF COMPUTATIONAL TIME F OR SIMULATIONS WITH THE NWE OIL 

10 components 20 components  

(RSA, RF) (CSA, MG) (RSA, RF) (CSA, MG) 

Overall simulation (seconds) 578.5 100% 647.5 100% 1,322.3 100% 1,884.2 100% 
Phase equilibrium calculations (seconds) 446.5 77% 514.5 79% 957.5 72% 1,505.8 80% 

SS 289.3 50% 291.5 45% 663.7 50% 689.1 37% 
Stability analysis (seconds) 

Newton 54.5 9% 68.3 11% 94.1 7% 306.0 16% 
SS 43.5 8% 44.0 7% 94.5 7% 97.3 5% 

Flash calculations (seconds) 
Newton 59.1 10% 110.6 17% 105.2 8% 413.3 22% 
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Fig. 12—Left: Comparison of computational times with (RSA, RF), (CSA, MG), and (CSA, MG) with Procedure A for the NWE oil-
displacement simulation. Right: Comparisons of computational times for phase-equilibrium calculations with the second-order 
convergence methods for the NWE oil displacement.

BSB Oil With a 2D Layered-Reservoir Model. We next simulate 
an oil displacement with injection gas consisting of 5% C1 and 95% 
CO2 for 1.5 HCPVI in a 2D layered-reservoir model. The reservoir 
consists of three layers with different thicknesses, porosities, and 
permeabilities, as given in Table 8. The production and injection 
wells are open from the top to the bottom layer. The reservoir oil 
is the BSB oil (Khan et al. 1992), and the properties are shown in 
Table 4. The MMP with pure CO2 was experimentally determined 
to be approximately 1,200 psia at reservoir temperature of 105°F 
(Khan et al. 1992). The injection well is operated at a constant bot-
tomhole pressure of 1,300 psia, and the production well produces 
at a constant bottomhole pressure of 900 psia.

Three hydrocarbon phases form over a relatively small por-
tion of the reservoir compared to the previous example with the 
NWE oil. Fig. 13 shows phase saturations and the distribution of 
the number of phases at 0.4 HCPVI. At this time, three and two 
hydrocarbon phases exist in 11% and 36% of the total grid cells, 
respectively. Simulation results using (CSA, MG) and (RSA, RF) 
are nearly identical with each other (Fig. 14). Table 9 shows a 
breakdown of the computational time for the 10- and 20-compo-
nent cases. As in the previous NWE oil case, the use of (RSA, RF) 
can decrease the computational time significantly without loss of 
accuracy. Fig. 15 compares the computational times with (RSA, 
RF) and (CSA, MG) for different NC. For example, the speed-up 
from using (RSA, RF) is 17 and 39% for the 10- and 20-compo-
nent cases, respectively. The speed-up mainly is attributed to the 
decreased computational time in the second-order convergence 
methods (Table 9). Fig. 15 compares the computational time spent 
in the Newton iteration for the stability and flash calculations. The 
Newton iteration with (RSA, RF) is 1.9 times and 4.2 times faster 

than that with (CSA, MG) for the 10- and 20-component cases, 
respectively. 

Simulation with (RSA, RF) also exhibits significantly improved 
robustness compared to that with (CSA, MG). MG can fail to 
converge to a correct solution in the following three cases: (1) the 
line search cannot find lower Gibbs free energy, (2) independent 
phase component mole numbers are updated to be negative, and 
(3) convergence cannot be achieved within a specified number 
of iterations. The RF algorithm can fail to converge to a correct 
solution when it converges to a trivial solution and when it cannot 
converge within a specified number of iterations. The RF algorithm 
contains an iterative solution of the Rachford-Rice equations, but 
the minimization algorithm of Okuno et al. (2009b) guarantees 
convergence even for more than three phases. 

Fig. 16 shows the number of failures with varying NC for 
RF and MG. The failure rate of MG is much more sensitive to 
NC compared to that of RF. MG can suffer significantly from 
round-off errors in near-critical regions (Trangenstein 1987). The 
round-off errors become more severe when more components are 
used because the independent variables have smaller values. The 
RF algorithm also can suffer from round-off errors in near-critical 
regions, but the results show improved stability of the algorithm. 
To see the effect of NC on the condition number of the Hessian 
matrix for MG, we consider the mixture of the BSB oil and gas 
that is at the same conditions as in the example calculation in the 
Standalone Three-Phase Flash Calculations section. The condi-
tion number of the Hessian matrix for MG is 1.3×1010 for seven 
components and 1.8×1011 for 20 components. The increase in the 
condition number by one order of magnitude can affect the failure 
rate of MG significantly because millions of flash calculations 

TABLE 8—RESERVOIR PROPERTIES  
FOR THE SIMULATION CASE STUDY WITH THE BSB OIL 

Dimensions 500 10 45 ft 
Number of grid cells 50 1 9 

Thickness (top/middle/bottom) (ft) 20.0/10.0/15.0 
Porosity (top/middle/bottom) 0.08/0.10/0.09 

Permeability (top/middle/bottom) (md) 7.0/11.2/9.8 
Relative permeability model Corey 

Residual saturation (W/L1/G/L2*) 0.4/0.2/0.05/0.05 
Endpoint relative permeability (W/L1/G/L2*) 0.35/0.50/0.65/0.65 

Exponent (W/L1/G/L2*) 3.0/3.0/3.0/3.0 
Initial saturation (W/L1/G/L2*) 0.4/0.6/0.0/0.0 

*W: aqueous phase; L1: oleic phase; G: gaseous phase; L2: CO2-rich liquid phase. 
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typically are performed in near-critical regions for simulation of 
multicontact miscible gasfloods. 

The increased failure rate of MG decreases the timestep size for 
the simulation using UTCOMP because of discontinuous changes 
in physical parameters, such as phase saturation and density. The 
decreased timestep size, in turn, increases the frequency of the 
solution of the pressure equations for the IMPEC scheme. For 
that reason, the 20-component case solves the pressure equations 

163 more times than the seven-component case. Fig. 16 shows 
that the number of pressure-equation solutions required increases 
as the failures in three-phase flash calculations increase. Failures 
in flash calculations can decrease the timestep sizes substantially, 
as shown in Fig. 17, where, for illustration, timesteps are shown 
over a small portion of the total simulation time. Fig. 17 also 
shows that the timestep size is more stable for simulations with 
(RSA, RF) than for simulations with (CSA, MG) because of the 
four failures of MG. Those results demonstrate that robustness 
of phase-equilibrium algorithms can affect the efficiency of the 
simulation not only through phase-equilibrium calculations them-
selves but also through a reduction of the timestep sizes. Also, if 
stability analysis fails to predict correctly that three hydrocarbon 
phases exist, the resulting false two-phase solution could cause a 
reduction in the timestep sizes (see the Use of Two-Phase Flash in 
a Three-Phase Region subsection). The speed-up as the result of 
improved timestep sizes would be more significant when more grid 
cells are used because the system of pressure equations becomes 
larger and pressure-equation solutions are costly. 

When a flash calculation fails to converge to the correct solu-
tion, UTCOMP, in general, does not repeat the same calculation 
using a different algorithm. UTCOMP continues the simulation, 
but a timestep size is decreased to alleviate a large change in physi-
cal properties over the timestep. There is another possible way to 
handle this. When the primary flash algorithm fails to converge to 
the correct solution, a simulator can attempt to solve the same flash 
problem using a more robust, but typically very time-consuming, 
algorithm. For such a simulator, flash failures also directly increase 
the total computational time of the simulation.

Fig. 13—Top left: Saturation distribution of the oleic phase at 0.4 HCPVI for the BSB oil displacement. Top right: Saturation 
distribution of the gaseous phase at 0.4 HCPVI. Bottom left: Saturation distribution of the CO2-rich liquid phase at 0.4 HCPVI. 
Bottom right: Distribution of the number of hydrocarbon phases at 0.4 HCPVI.

Fig. 14—Recovery factors for the BSB oil-displacement simu-
lations using (RSA, RF) and (CSA, MG) are nearly identical to 
each other.

TABLE 9—BREAKDOWN OF COMPUTATIONAL TIME F OR SIMULATIONS WITH THE BSB OIL 

10 components 20 components  

(RSA, RF) (CSA, MG) (RSA, RF) (CSA, MG) 

Overall simulation (seconds) 1,225.4 100% 1,434.4 100% 2,849.9 100% 3,967.5 100% 
Phase equilibrium calculations (seconds) 973.9 79% 1,175.5 82% 2,133.7 75% 3,224.9 81% 

SS 553.2 45% 581.7 41% 1,282.1 45% 1,341.4 34% 
Stability analysis (seconds) 

Newton 53.5 4% 86.1 6% 88.1 3% 378.3 10% 
SS 235.6 19% 240.8 17% 529.3 19% 545.3 14% 

Flash calculations (seconds) 
Newton 131.7 11% 266.9 19% 234.1 8% 959.9 24% 
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Conclusions
We investigated the importance of three-phase-equilibrium calcu-
lations in simulation of low-temperature gasfloods. We developed 
an efficient and robust algorithm for three-phase flash calculations 

4,500
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1,500

1,000

500

0

Fig. 15—Left: Comparison of computational times with (RSA, RF) and (CSA, MG) for the BSB oil-displacement simulation. Right: 
Comparisons of computational times for phase-equilibrium calculations with the second-order convergence methods for the 
BSB oil displacement.

Fig. 16—Left: Comparison of the number of failures in three-phase flash calculations with the RF algorithm and MG for different 
numbers of components for the BSB oil displacement. Right: Frequency of solution of pressure equations during the simulation 
is positively correlated with the number of failures in three-phase flash calculations.

Fig. 17—Variation of timestep sizes for simulations with (RSA, 
RF) and (CSA, MG). The four arrows indicate failure points of 
MG for three-phase flash calculations. There are no failures for 
the RF algorithm within this time window. 

using a reduced method. The algorithm was implemented in a 
multiphase compositional simulator, UTCOMP, to demonstrate 
the efficiency and robustness in simulations using different fluids, 
numbers of components, and reservoir models. The results show 
that 
•  The two-phase-equilibrium approximations proposed in the lit-

erature can lead to a complete failure of simulation or to errone-
ous simulation results.

•  Use of the reduced method can decrease the computational 
time significantly without loss of accuracy. For the cases stud-
ied, simulations with the three-phase reduced method using 10 
components take less computational time than simulations with 
conventional methods using 15 components assuming only two 
phases exist. 

•  Compared to the standard algorithms used in this research, the 
reduced method exhibits improved efficiency and robustness, 
especially when more components are used in the simula-
tion. 

•  On the basis of the simulation case studies using UTCOMP, the 
robust three-phase flash with the reduced method decreases the 
computational time not only because of the flash calculations 
themselves but also because of improved timestep sizes.

•  Because of the significant speed-up, use of the reduced method 
can allow for more components to be used in the simulation. 
Using more components in reservoir simulation can improve 
accuracy of the fluid characterization and reservoir/surface inte-
grated modeling.
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Nomenclature
 Ai = EOS parameter for component i
 Bi = EOS parameter for component i
 Fij  = fugacity equation for component i in phase j
 Fj

R = jth equation for reduced fl ash calculations
 gi = parameter of component i for the reduced method
 hi = parameter of component i for the reduced method
 kij =  binary interaction coeffi cient between components i and j
 Kij = K-value for component i in phase j
 L1 = oleic phase
 L2 = solvent-rich liquid phase
 NC = number of components
 PC = critical pressure
 Si = stationarity equation for component i 
 Sj = saturation of phase j
 TC  = critical temperature
 V = gaseous phase
 xij  = mole fraction of component i in phase j
 zi  = mole fraction of component i in a mixture
 Zj = compressibility factor for phase j
 �j = mole fraction of phase j
 �  = stopping criteria for iterative solution
 �ki =  constant term for component i to defi ne kth reduced 

parameter
 �kj = kth reduced parameter in phase j
 �j = vector with elements �kj for k = 1,…,5
 �ij = fugacity coeffi cient for component i in phase j
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Appendix A
Fig. A-1 is a flow chart of multiphase equilibrium calculations in 
UTCOMP from Chang (1990).

Conversion Factors
 ft × 3.048*  E−01 = m
 °F    (°F−32)/1.8  = °C 
 psi × 6.894 757  E+00 = kPa 

*Conversion factor is exact.
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