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Summary
Flash calculations for use in compositional simulation are more 
difficult and time-consuming as the number of equilibrium phases 
increases beyond two. Because of its complexity, many simulators 
do not even attempt to incorporate three or more hydrocarbon 
phases, even though such cases are important in many low-tem-
perature gasfloods or for high temperatures where hydrocarbons 
can partition into water. Multiphase flash algorithms typically use 
successive substitution (SS) followed by Newton’s method. For 
NP-phase flash calculations, (NP−1) Rachford-Rice (RR) equa-
tions are solved in every iteration step in SS and, depending on 
the choice of independent variables, in Newton’s method. Solu-
tion of RR equations determines both compositions and amounts 
of phases for a fixed overall composition and set of K-values. A 
robust algorithm for RR is critical to obtain convergence in mul-
tiphase compositional simulation and has not been satisfactorily 
developed, unlike the traditional two-phase flash. In this paper, 
we develop an algorithm for RR equations for multiphase com-
positional simulation that is guaranteed to converge to the correct 
solution independent of the number of phases for both positive and 
negative flash calculations.

We derive a function whose gradient vector consists of RR 
equations. This correct solution to the RR equations is formulated 
as a minimization of the nonmonotonic convex function using the 
independent variables of (NP−1) phase mole fractions. The key to 
obtaining a robust algorithm is that we specify nonnegative con-
straints for the resulting equilibrium phase compositions, which are 
described by a very small region with no poles. The minimization 
uses Newton’s direction with a line-search technique to exhibit 
superlinear convergence. We show a case in which a previously 
developed method cannot converge while our algorithm rapidly 
converges in a few iterations. We implement the algorithm both 
in a standalone flash code and in UTCOMP (Chang et al. 1990), 
a multiphase compositional simulator, and show that the algorithm 
is guaranteed to converge when a multiphase region exists as indi-
cated by stability analysis. 

Introduction
Mixtures of CO2 and reservoir oil can exhibit complex phase 
behavior, especially at temperatures typically below 120°F where a 
third CO2-rich liquid phase can coexist with the oleic and gaseous 
phases. Accurate numerical simulation of CO2 flooding involving 
such complex phase behavior requires robust algorithms for mul-
tiphase equilibrium calculations. Nghiem and Li (1986) examined 
the importance of the third phase in multiphase compositional 
simulation and concluded that two-phase equilibrium approxima-
tions can be used with little loss of accuracy because the three-
phase region exists only over a small part of the reservoir. However, 
their study was based on 1D slimtube simulations using only two 
recombined oils from the same field. 

Khan et al. (1992) and Wang and Strycker (2000) later demon-
strated displacements in which oil recoveries using only two-phase 
equilibrium calculations are significantly different from those 
made with three-phase calculations. Okuno (2009) and Okuno et al. 

(2009) demonstrated that the two-phase equilibrium approximation 
can result in nonconvergence of the simulation because of discon-
tinuous changes in physical properties over a timestep. Therefore, 
numerical simulation of CO2 flooding at low temperatures should 
be capable of multiphase equilibrium calculations.

Phase-behavior calculations in compositional simulation con-
sist of stability analysis and flash calculations (see Appendix A). 
Stability analysis can detect instability of a phase mixture by 
searching for a negative value of the tangent-plane distance func-
tion (Michelsen 1982b). If unstable, the phase must split into two 
or more phases. A stability analysis that detects the presence of a 
third phase can also give the first initial estimates of the K-values 
for subsequent flash calculations. 

Flash calculations initially use SS to provide better K-value 
estimates for final convergence of the equilibrium phase composi-
tions using Newton’s iterations. SS iterations and, depending on the 
choice of independent variables, Newton’s iterations involve two 
loops—the outer iteration loop containing the inner iteration loop. 
K-values are updated on the basis of fugacity equations in the outer 
iteration loop. Compositions and mole fractions for phases are calcu-
lated to satisfy material-balance equations in the inner iteration loop. 
RR equations are commonly used for the inner loop as originally 
proposed by Rachford and Rice (1952). The goal of the RR iteration 
is to determine the phase mole fractions and phase compositions 
for a fixed overall composition and set of specified K-values. The 
solution of the RR equation is often referred to as a constant-K flash 
calculation. This paper focuses on the constant-K flash calculation 
(inner iteration) as part of a rigorous equation of state (EOS) flash 
(outer iteration) for compositional reservoir simulation.

There are two different possibilities for a constant-K flash cal-
culation within the framework of compositional reservoir simula-
tion. The first, a positive flash, is a NP-phase flash where the overall 
composition lies within the NP-phase region, resulting in positive 
phase mole fractions. The second, a negative flash, is a flash where 
the overall composition is not within the NP-phase region, resulting 
in one or more negative phase mole fractions. In compositional 
reservoir simulation, the algorithm must be capable of perform-
ing both types of flash calculations successfully. Because a flash 
calculation is performed only when phase instability is detected on 
the basis of the tangent-plane criterion (Baker et al. 1982), phase 
mole fractions must be positive once the outer iteration correctly 
achieves convergence. However, equilibrium phase mole fractions 
calculated in a constant K-flash calculation can be negative before 
convergence, depending on the K-values provided by the most 
recent outer iteration. 

Another type of negative flash that is not considered in this 
paper is one where the overall composition lies in negative compo-
sition space. This kind of negative flash can be used for minimum-
miscibility-pressure calculations (Yuan and Johns 2005) but is not 
needed in compositional reservoir simulation.

The robustness of two-phase constant-K flash calculations is not 
an issue in compositional simulation because it is a root-finding 
problem for a univariate monotonic function that can be solved safely 
by a combination of bisection and Newton’s method coupled with 
underrelaxation. The solution lies in the feasible region as identified 
previously by Whitson and Michelsen (1989). Bisection is performed 
to make the region narrower, while underrelaxation is used to avoid 
the Newton’s iteration jumping out of the region of interest.

For multiphase cases, however, the increase in the number of 
independent variables to be solved makes the behavior of RR equa-
tions more implicit and complicated. There are several attempts to 
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solve this multiphase K-value problem, which are generally of two 
types: root finding and minimization. The root-finding approach is 
more commonly used and solves a system of (NP−1) RR equations 
with Newton’s method (Nelson 1987; Bünz et al. 1991; Eubank 
2006), none of which considers constraints for negative flash calcu-
lations. Leibovici and Neoschil (1995) extended the feasible region 
of Whitson and Michelsen to multiphase calculations and used New-
ton’s method with underrelaxation. However, Leibovici and Nichita 
(2008) stated that the algorithm does not work for some situations, 
and we demonstrate in this paper a case where the method cannot 
converge. Haugen et al. (2007) proposed a 2D bisection algorithm 
to provide a good initial estimate for Newton’s iterations for three-
phase calculations. However, their procedure can take numerous 
iterations and likely does not always converge, especially when an 
overall composition is close to a critical endpoint. This is consistent 
with the statement by Dennis and Schnabel (1996) that the bisection 
method does not extend naturally to multiple dimensions.

Michelsen (1994) developed a novel approach to multiphase 
constant-K flash calculations by rewriting the RR-equation solu-
tion as the minimization of a convex function. Although no 
derivation of the function is given in his paper, the approach in 
our opinion is superior to the root-finding approach. Michelsen’s 
algorithm, however, considered only positive flash calculations. 
Leibovici and Nichita (2008) attempted to overcome this problem 
by formulating the minimization using the feasible region of Lei-
bovici and Neoschil (1995), resulting in a minimization problem 
with an open constraint set. Their feasible region is confined by 
poles where the function cannot be defined, so that the feasible 
region is not sufficient and convergence problems can occur. Also, 
Leibovici and Nichita (2008) did not develop an algorithm to 
solve their minimization problem. Instead, they used multipurpose 
minimization software. Robustness and efficiency of their minimi-
zation depend on the algorithm used because simple minimization 
algorithms cannot handle the open constraint set.

The importance of multiphase flash calculations for compo-
sitional simulation requires a robust and efficient algorithm for 
multiphase constant-K flash calculations that always converges. 
The main objective of this research is to develop an algorithm for 
which convergence can be analytically proved for any number of 
phases for both positive and negative constant-K flash calculations. 
First, we derive the convex function that we minimize to solve for 
the equilibrium phase mole fractions. This objective function is the 
same as Michelsen (1994), but we explicitly derive the function so 
that our algorithm can be clearly understood. The function is then 
analyzed in detail to develop a robust and efficient algorithm using 
Newton’s method with a line-search technique. After that, we pres-
ent example standalone calculations for three and five phases. Last, 
our algorithm is implemented in a multiphase compositional simu-
lator and used in an example simulation of a low-temperature oil 
displacement by CO2 involving three-hydrocarbon-phase flow. 

Multiphase Equilibrium Calculations in 
Compositional Simulation
Multiphase equilibrium calculations in UTCOMP (Chang et al. 
1990) consist of stability analysis and flash calculations. Appendix 
A presents a flow chart for the multiphase equilibrium calculations 
in UTCOMP. Although there is a wide variety of flash algorithms, 
a procedure for a multiphase flash calculation solves for the inde-
pendent variables lnKij (i = 1, ..., NC and j = 1, ..., NP−1) using the 
fugacity equations,
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In Eqs. 1 through 5, the NPth phase is selected arbitrarily as the 
reference phase. 

The multiphase RR equations are derived using Eqs. 2 through 5. 
Substitution of Eqs. 3 and 5 into Eq. 2 eliminates the dependent 
phase mole fraction and phase compositions resulting in
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Substitution of Eq. 6 into Eq. 7 results in the final form of the 
multiphase RR equations,
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where � is a vector with elements �j ( j = 1, …, NP−1).
Flash calculations in UTCOMP initially use accelerated SS but 

are switched to minimization of the Gibbs free energy once accel-
erated SS satisfies a specified switching criterion (Perschke et al. 
1989). In this research, we replaced accelerated SS with conven-
tional SS to start the second-order convergence method robustly. 
Appendix B gives the SS algorithm where K-values are updated in 
the outer iteration loop using Eq. 1 and a selected cubic EOS and 
the RR equations are solved in the inner iteration loop to determine 
phase compositions and phase mole fractions. The minimization 
of the Gibbs free energy that follows the SS steps in UTCOMP 
does not use the RR equations because the independent variables 
�jxij (i = 1, ..., NC and j = 1, …, NP−1) can explicitly provide phase 
compositions and phase mole fractions (Michelsen 1982a).

Constant-K Flash Formulation and Algorithm
In this section, we derive a new algorithm for a NP-phase con-
stant-K flash calculation that is based on a minimization of a 
convex function with NC linear constraints. The convex function is 
similar to the one presented by Michelsen (1994). Unlike previous 
research, however, we derive and analyze the behavior of the func-
tion to develop a practical and robust algorithm for compositional 
simulation. We also provide a very small region in which the solu-
tion to the RR equations must lie.

Convex Function. The convex function is derived by exploiting a 
special structure of the RR equations. We begin by examining the 
common root-fi nding technique to solve Eq. 8 by constructing the 
Jacobian matrix where the elements are given by
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where j k NP, ,...,= −1 1. The Jacobian matrix is symmetric, indi-
cating that there is a scalar function F(�) for which the gradient 
vector consists of the RR equations. This is best explained by 
examining the relation between Newton’s methods for root find-
ing and those for minimization. That is, the iteration schemes for 
Newton’s method are
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and
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for minimization.
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Although the derivations of these schemes are different from each 
other, the latter can be viewed as a special case of the former. That 
is, f corresponds to the gradient of F if and only if the Jacobian 
matrix of f is symmetric (Bertsekas 1999). 

The function F to be minimized is then easily found by per-
forming an indefinite integral of fj with respect to �j to obtain
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In Eq. 9, the constant of integration is set to zero without loss of 
generality. Eq. 9 is identical to the one presented by Michelsen 
(1994) except that he retained the integration constant.

There is a significant advantage in using minimization to solve 
the multiphase constant-K flash problem. The minimization func-
tion F defined by Eq. 9 is easily proved to be convex because its 
Hessian matrix is positive semidefinite, as shown in Appendix C. A 
summary for Appendix C is that, for an NC×(NP−1) matrix {1−Kij} 
of full rank, the Hessian matrix of F is positive definite and the 
function is strictly convex. Otherwise, the Hessian matrix is only 
positive semidefinite. A semidefinite Hessian occurs for example at 
critical points, including critical endpoints [called bicritical points 
in Haugen et al. (2007)] where two of the three phases are critical 
and at equilibrium with the other noncritical phase. 

Another important behavior of the function is that if the region 
ti > 0 (i = 1, …, NC) is unbounded, then the function becomes 
monotonic. That is, the function does not have a minimum and 
there is no solution to the constant-K flash with NP phases. 
The proof of this statement is straightforward. If the region is 
unbounded, there exists a vector d such that
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This result is in contrast to Leibovici and Nichita (2008) who 
incorrectly showed a case where the region is unbounded, but the 
function has a minimum (Fig. 4 with their explanation in section 
4.2 “Reservoir oil/CO2 mixture”).

Constraints. Similarly to the traditional two-phase constant-K fl ash, 
the function has NC poles defi ned when ti = 0 (i = 1, …, NC). Posi-
tive values of ti (i = 1, …, NC) defi ne the most simplistic feasible 
region for the solution of a multiphase constant-K fl ash calculation. 
This is the same type of the feasible region used in the root-fi nding 
technique of Leibovici and Neoschil (1995) and the minimization 
approach of Leibovici and Nichita (2008). To formulate a minimi-
zation of F, Leibovici and Nichita (2008) used the constraint set 
L�={� | ti > 0, i = 1, …, NC}. Care must be taken in handling this 
open set L�. When one simplifi es the open set to be a closed set L = 
{� | ti ≥ 0, i = 1, …, NC}, iterations can lie on a pole, where the func-
tion cannot be defi ned and the calculations will then cease. When 
an iteration point is near the pole, Newton’s iteration makes little 
improvement in minimizing the objective function, if any, because of 
the nonquadratic behavior along the poles. The convergence problem 
is signifi cant because it can stop the simulation from proceeding. 

To increase the robustness of the iterations, we develop a new 
feasible region of smaller size that also contains no poles. Our 
feasible region is derived on the basis of nonnegativity of phase 
component mole fractions, 0 ≤ xij ≤ 1 (i = 1, …, NC and j = 1, …, 
NP). To allow for a negative flash, we consider that phase mole 
fractions can be negative. This is important because, as iterations 
proceed in EOS flash calculations, a few iterations may be outside 
of the multiphase region of interest but, with more iterations (if 
allowed), can move back into the multiphase region. 

Using Eqs. 5 and 6, the nonnegativity of phase component mole 
fractions requires the following inequalities:
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The final form of constraints is easily derived as
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where ai = {1−Kij}, � = {�j}, and bi = min{1−zi, minj{1−Kijzi}} for 
i = 1, …, NC, j = 1, …, NP−1. The constraint set S = {� | ai

T� ≤ 
bi, i = 1, …, NC} leads to a smaller feasible region than that based 
on the set L = {� | ti ≥ 0, i = 1, …, NC}. The new set S does not 
contain the region where the minimization function exhibits poor 
convergence. The feasible region developed in this section is 
the primary but important difference between our algorithm and 
Michelsen (1994) because this feasible region leads to robustness 
for both positive and negative flash calculations.

Algorithm. In this subsection, we present a detailed algorithm that 
can be used to solve the multiphase constant-K fl ash calculations 
robustly. Our formulation for multiphase constant-K fl ash devel-
oped in the preceding subsection is as follows:

Minimize subject toF z ti ii

NC
�( ) = −( )=∑ ln

1
a bi

T
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We consider only cases where the minimization has a unique 
solution. That is, the minimization function is convex and non-
monotonic over the constraint set S = {� | ai

T� ≤ bi, i = 1, …, 
NC}. This is the case in compositional simulation because NP-
phase flash calculations are performed only when existence of a 
NP-phase solution is ensured by stability tests (see Appendix A). 
Stability analysis can fail, but, when it does so, it fails to predict 
the existence of an additional phase, not the other way around. The 
minimization of the convex function is safely solved using search 
directions and step sizes based on Newton’s method coupled with 
a line search along that direction.

In multiphase compositional simulation, such as with UTCOMP, 
a good initial estimate may be available from the previous timestep 
or from the previous iteration step in the flash calculation. Other-
wise, we need to make an initial estimate of � to start the iterations. 
Haugen et al. (2007) proposed 2D bisection to initiate Newton’s 
iterations for three-phase constant-K flash calculations. However, 
analysis of our minimization function explicitly generates good 
initial estimates for � by considering NP constraints for phase mole 
fractions, �j ≥ 0 ( j = 1, …, NP), in addition to Eq. 10. A feasible 
initial estimate is then determined by an equally weighted mean 
of the vertices of the intersection of the sets S and P = {� | �j ≥ 
0, j = 1, …, NP}.

An algorithm to solve the minimization is as follows:
1. Generate an initial estimate for the independent variables 

�j ( j = 1, …, NP−1) based on the previous timestep, the previous 
iteration step, or an equally weighted mean of the vertices of the 
S and P intersection.

2. Calculate the gradient of the convex function F and set an 
iteration index n to unity.

3. Calculate the Hessian matrix and solve the system of equations to 
obtain the Newton’s direction. That is, calculate d F Fn n n= − ∇( ) ∇

−2 1
.

4. Calculate the maximum feasible step size �max along the 
Newton’s direction dn, as shown below. If �max ≥ 1, then set �max 
to 1.0 resulting in a unit Newton’s step,

�
�

max = − >
⎧
⎨
⎩

⎫
⎬
⎭

min :
i

i i
T n

i
T n i

T nb a

a d
a d 0 .

5. Determine a step size �n using a line search technique (see 
Appendix D) applied over the range of 0 ≤ �n ≤ �max.

6. Update the independent variables, �j
n+1 = �j

n+�n dn.
7. If the maximum norm of the gradient is less than a specified 

tolerance (e.g., 10−8), stop. Otherwise, continue to Step 8.
8. Increase the iteration index (n = n+1) and go back to Step 3.
The Newton’s direction is guaranteed to be a descent direc-

tion because the Hessian matrix is positive definite. In Step 3, 
the Hessian matrix can be inverted inexpensively for three-phase 
cases. Step 4 calculates the maximum feasible step size �max along 
the Newton’s direction. The value of �max less than unity indicates 
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that the full Newton’s step would go out of the feasible region, so 
it is not allowed. The line search used is based on the univariate 
Newton’s method with a relatively large tolerance (e.g., 10−3) for 
the maximum norm of the gradient. The procedure ensures that the 
Newton’s iterations do not go out of the feasible region.

Comparisons in Standalone Calculations
In this section, we perform example calculations for three and 
five phases, although our algorithm can be applied with complete 
robustness for even more phases. Because five-phase calculations 
cannot be illustrated in a figure, three-phase calculations are 
discussed in more detail. For standalone calculations, there are 
no previous timesteps or iteration steps to use as an initial guess. 
We compare two algorithms to perform standalone calculations: 
the minimization with the constraint set S (MS) developed in this 
research and the conventional root-finding algorithm with the con-
straint set L = {� | ti ≥ 0, i = 1, …, NC} (RL) developed by Leibovici 
and Neoschil (1995). For underrelaxation in the RL algorithm, we 
use 0.9 as the underrelaxation parameter. 

To compare the two methods, we randomly generated overall 
compositions and K-values according to the following procedure:

1. Randomly generate NP positive phase compositions. K-val-
ues are calculated on the basis of those compositions.

2. Randomly generate positive phase mole fractions, and cal-
culate overall composition using Eq. 2.

3. Solve the generated problem using either MS or RL.
4. Go back to Step 1.

Thus, we are solving only flash calculations here where the phase 
mole fractions are positive. This is the most frequently encountered 
situation in compositional simulation.

Initial estimates for MS are generated as described in the pre-
ceding section. For RL, initial estimates for �j ( j = 1, …, NP−1) are 
set to 1/NP. This initial estimate is always feasible for RL because 
it corresponds to an equally weighted mean of vertices of the set 
P = {� | �j ≥ 0, j = 1, …, NP}, which is contained by the set L. 
Initial estimates generated for MS and RL are in general different 
from each other because they are based on the different feasible 
regions. The stopping criteria for MS and RL are 10−8 for the 
maximum norm of the gradient of F and for the maximum residual 
of the RR equations, respectively.

The results show that the average numbers of iterations per flash 
are almost the same: 3.5 for MS and 3.6 for RL for three phases and 
3.8 for MS and 3.7 for RL for five phases. However, the number of 
iterations per problem is more problem-dependent for RL than for 
MS as shown in Fig. 1. The maximum number of iterations for the 
1 million flash calculations when three phases are present is seven 
for MS, compared to 20 for RL. For five phases, MS requires only 
six iterations at most, compared to 20 for RL. 

For example, consider the flash with overall composition and 
K-values shown as Example 1 in Table 1. As shown in Fig. 2, our 
algorithm converges in only four iterations compared to 20 for 
RL. Fig. 3 shows the iteration path in � space for both methods. 
The shaded region in this figure is the feasible region, which is the 
intersection of the zones above the solid lines and those below the 
dashed lines. For RL, the first Newton’s step does not go out of its 
feasible region, but goes very near one of the poles. Once an itera-
tion approaches a pole, it takes many iterations for it to move away 
from the pole. This is best understood by considering the behavior 
of the function to be minimized instead of a system of equations 
actually solved by RL. As the pole is approached, the function 
exhibits more-planar shape, and the quadratic approximation, on 
which Newton’s method is based, becomes less appropriate. Also, 
the nearly planar shape of the function results in a large condition 
number of the Hessian matrix. Fig. 4 shows the condition numbers 
of the Hessian matrix for MS and the Jacobian matrix for RL 
during the iterations. Although the largest condition number for 
RL is 8.1 million for this case, the condition number can be much 
larger depending on how close the iteration point is to the pole. If 
the condition number is too large, the calculation cannot converge 
because of round-off errors.

Example 2 in Table 1 shows a case where RL cannot converge. 
As shown in Fig. 5, RL cannot decrease the residual of the RR 
equations, while MS converges in only four iterations. Fig. 6 shows 
the iteration path in � space for each algorithm. For MS, a unit 
Newton’s step for the first iteration moves out of its feasible region, 
and the line search is performed to determine the next iteration 
point. For RL, a unit Newton’s step does not go out of its feasible 
region, but the resulting iteration point is located very near one of 
the poles. Because of the round-off errors caused by a significantly 
large condition number of the Jacobian matrix, the iterations can-
not move away from the pole. Fig. 7 shows the condition number 
as a function of a step size along the Newton’s direction for the 
first iteration for each algorithm. A unit step size for each algorithm 
corresponds to a point on the boundary of its feasible region. For 
RL, the Jacobian matrix can be significantly ill-conditioned in the 
vicinity of a pole, resulting in poor convergence. The region of poor 
convergence is never encountered in our MS method.

Example 3 in Table 1 gives a case where thermodynamic con-
ditions are close to a critical endpoint [called a bicritical point in 
Haugen et al. (2007)] (i.e., a point in P-T-x space at which two 
of the three phases merge in the presence of the other noncritical 
phase). The conditions near a critical endpoint are indicated by the 
two sets of K-values, which become equal to each other. The area 
of the feasible region is 25 times larger for RL than that for MS, as 
shown in Fig. 8. Fig. 9 compares the convergence behaviors of MS 
and RL, where MS converges in four iterations compared to seven 
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Fig. 1—Frequency distribution of the numbers of iterations required for convergence for 1 million flash calculations. (a) Three-
phase calculations. (b) Five-phase calculations.
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for RL. As shown in Fig. 10, the smaller feasible region provides 
a better initial estimate for MS and also reduces the number of 
iterations required for convergence. The correct solution to which 
MS converges is (�1, �2) = (0.87, 2.2×10−6), which is very near a 
phase boundary. This example also shows that our algorithm has 
no convergence problem in the vicinity of phase boundaries. 

Example 4 in Table 1 also provides conditions near a critical 
endpoint for three components. This example is given, however, 
to demonstrate that our algorithm is capable of robust negative 
flash calculations even for near-critical conditions. Fig. 11 shows 
the tie-triangle on the ternary diagram. The elongated tie-triangle 
indicates that two of the three phases are near-critical and at equi-
librium with the other highly immiscible phase. We consider the 
negative flash calculation for this near-critical mixture at an overall 
composition located outside the tie-triangle, as shown in Fig. 11. 
Fig. 11 shows that MS converges to the solution in five iterations, 
while RL does so in eight iterations. The iteration paths taken in � 
space are given in Fig. 12. Fig. 12 shows only part of the feasible 
region for clarity, but the feasible region is bounded as proved in 
the Convex Function subsection of this paper. The larger feasible 

TABLE 1—EXAMPLE OVERALL COMPOSITIONS AND CONSTANT -K VALUES  
FOR FLASH CALCULATIONS  

Example 1 

Component zi Ki1 Ki2 

zi Ki1 Ki2 

zi Ki1 Ki2 

 1 0.204322076984 1.23466988745 1.52713341421 
 2 0.070970999150 0.89727701141 0.02456487977 
 3 0.267194323384 2.29525708098 1.46348240453 
 4 0.296291964579 1.58954899888 1.16090546194 
 5 0.067046080882 0.23349348597 0.24166289908 
 6 0.062489248292 0.02038108640 0.14815282572 
 7 0.031685306730 1.40715641002 14.3128010831 

Example 2 

Component 

1 0.132266176697 26.3059904941 66.7435876079 
2 0.205357472415 1.91580344867 1.26478653025 
3 0.170087543100 1.42153325608 0.94711004430 
4 0.186151796211 3.21966622946 3.94954222664 
5 0.111333894738  0.22093634359 0.35954341233 
6 0.034955417168 0.01039336513 0.09327536295 
7 0.159847699672 19.4239894458 12.0162990083 

Example 3 

Component 

 1 0.896646630194 1.64571122126 1.61947897153 
 2 0.046757914522 1.91627717926 2.65352105653 
 3 0.000021572890 0.71408616431 0.68719907526 
 4 0.000026632729 0.28582415424 0.18483049029 
 5 0.016499094171 0.04917567928 0.01228448216 
 6 0.025646758089 0.00326226927 0.00023212526 
 7 0.014401397406 0.00000570946 0.00000003964 

Example 4 

Component zi Ki1 Ki2  xi1 xi2 xi3 

  1 0.08860 0.112359551 1.011235955 0.100 0.900 0.890 
  2 0.81514 13.72549020 0.980392157 0.700 0.050 0.051 
  3 0.09626 3.389830508 0.847457627 0.200 0.050 0.059 

1×105

1

1×10–5

1×10–10

Fig. 2—Convergence behaviors of the MS and RL algorithms 
for Example 1 in Table 1. MS takes only four iterations, com-
pared to 20 for RL.
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Fig. 3—Iteration path for Example 1 in Table 1. The shaded region is the feasible region, which is the intersection of the zones 
above the solid lines and those below the dashed lines. (a) The MS algorithm. (b) The RL algorithm.

1×1012

1×108

1×104

1

Fig. 4—Condition number during the iteration for Example 1 
in Table 1. The condition number for RL becomes very large 
near the pole demonstrating the poor convergence properties 
of RL.

Fig. 6—Iteration path for Example 2 in Table 1. The feasible region is the intersection of the zones above the solid lines and those 
below the dashed lines. (a) The MS algorithm. (b) The RL algorithm. The iterations of RL become stuck very near the pole.

1×1020

1×1010

1

1×10–10

Fig. 5—Convergence behaviors of the MS and RL algorithms 
for Example 2 in Table 1. RL cannot converge, while MS con-
verges in only four iterations.
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region for RL results in a less accurate initial estimate and more 
iterations to convergence because the feasible region for RL is 
bigger and exhibits poor convergence near the poles. 

MS occasionally performs several iterations for line search in 
the first iteration. In terms of computational effort, the line search 
is inexpensive, taking only 20% of the calculation time for one 
iteration of RL.

Simulation Case Study
We implemented and tested our new algorithm in various simu-
lation runs with UTCOMP to confirm that it is applicable to 
multiphase compositional simulation. We emphasize here that our 
constant-K flash algorithm works as part of rigorous EOS flash 
calculations within UTCOMP. That is, we do not assume constant 
K-values for our simulations. This section presents one simulation 
example, where the computations are performed using a Pentium 
4 at 3.0 GHz and 2.0 GB of RAM.

We consider gas injection (impure CO2 injection) for one pore 
volume in a quarter of a staggered-line-drive pattern. A perme-
ability field is stochastically generated for a 2D reservoir model, 
as shown in Fig. 13. The reservoir oil used is the BSB west Texas 
oil, for which the minimum miscibility pressure for pure CO2 
injection was experimentally measured to be approximately 1,200 
psia at the reservoir temperature of 105°F (Khan et al. 1992). The 
reservoir and fluid properties are summarized in Tables 2 and 3, 
respectively. For the seven-component-fluid model, the Peng-Rob-
inson EOS (Peng and Robinson 1976) is used with the van der 

Waals mixing rules. The parameters for the relative permeability 
model for the CO2-rich liquid phase are assumed to be the same 
as those for the gaseous phase. The aqueous phase is at its residual 
saturation. The initial, injection, and production pressures are set 
to 1,100, 1,250, and 1,100 psia, respectively.

In the flash calculations, we use SS followed by minimization 
of the Gibbs free energy. Stability analysis uses the stationary point 
method (Michelsen 1982b) with SS followed by Newton’s method. 
The switching criteria from SS to the second-order convergence 
methods are 10−3 both for flash calculations and stability analysis. 
The stopping criteria for flash calculations and stability analysis 
are 10−8, while that for the constant-K flash calculations is 10−10. 
Stability analysis for a single phase is performed only for well 
cells and cells adjacent to two- or three-phase cells, as described 
by Young and Stephenson (1983) and implemented in UTCOMP 
by Chang (1990).

The resulting oil recovery is shown in Fig. 13. Fig. 14 shows 
the saturation distributions of the oleic, gaseous, and CO2-rich 
liquid phases, and the distribution of the number of phases both 
at the breakthrough time of 0.45 pore volumes injected (PVI). The 
three-phase region exists in 23% of the total number of grid cells. 
Nghiem and Li (1986) observed that a three-phase region exists 
only in a small part of grid cells in their 1D simulations and con-
cluded that the three-phase region can be ignored by using only 
two-phase flash calculations with little loss of accuracy. However, 
as shown here, the number of cells in a three-phase equilibrium 
state can be much higher when 2D simulations are considered.

1×1020

1×1015

1×1010

1×105

1

Fig. 7—Condition number along Newton’s direction for the first 
iteration step for Example 2 in Table 1. The condition number 
for RL rapidly increases as the feasibility limit is approached, 
while that for MS increases only slightly.

Fig. 8—Feasible region for Example 3 in Table 1 that is shown as the intersection of the zones above the solid lines and those below 
the dashed lines. (a) The MS algorithm. (b) The RL algorithm. The feasible region is 25 times larger for RL than that for MS.

1×102

1×10–1

1×10–4

1×10–7

1×10–10

Fig. 9—Convergence behaviors of the MS and RL algorithms 
for Example 3 in Table 1.
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Fig. 10—Iteration path for Example 3 in Table 1. The feasible region is the intersection of the zones above the solid lines and 
those below the dashed lines. (a) The MS algorithm. (b) The RL algorithm.

1×102

1×10–1

1×10–4

1×10–7

1×10–10

Fig. 11—(a) Ternary diagram showing the tie-triangle and overall composition for the negative flash Example 4 in Table 1. (b) 
Convergence behaviors of the MS and RL algorithms for Example 4 in Table 1. 

Fig. 12—Iteration path for Example 4 in Table 1. The feasible region is the intersection of the zones above the solid lines and 
those below the dashed lines. (a) The MS algorithm. (b) The RL algorithm. 
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Fig. 13—(a) Randomly generated permeability field in millidarcies. (b) Oil recovery for the simulation case study.

TABLE 2—RESERVOIR PROPERTIES  
FOR SIMULATION CASE STUDY 

Dimensions 1000 500 20 ft 

Number of grid cells 40 20 1 

Porosity 0.25 

ln-mean permeability 102 md 

Dykstra-Parsons coefficient 0.58 

Correlation length x = 600 ft, y = 300 ft 

Reservoir temperature 105°F 

Initial reservoir pressure 1,100 psia 

Relative permeability model Corey 

Residual saturation (W/L1/G/L2*) 0.25/0.20/0.05/0.20 

Endpoint relative permeability (W/L1/G/L2*) 0.21/0.70/0.35/0.35 

Exponent (W/L1/G/L2*) 1.5/2.5/2.5/2.5 

Initial saturation (W/L1/G/L2*) 0.25/0.75/0.0/0.0 
* W: aqueous phase; L1: oleic phase; G: gaseous phase; L2: CO2-rich liquid phase.

Three-phase constant-K flash calculations were performed 
approximately 0.7 million times. There were no failures in those 
calculations, confirming the robustness of our algorithm for this 
case. Table 4 shows the breakdown in computational time for 
phase equilibrium calculations. Multiphase constant-K flash cal-
culations, which are not shown in the table, take only 0.38% 
of the total simulation time. The phase equilibrium calculations 

TABLE 3—FLUID PROPERTIES USED IN SIMULATION CASE STUDY 

Binary Interaction Coefficient*
 Oil (mol %) Gas (mol %) Molecular Weight Tc (°F) Pc (psia) Acentric Factor CO2 

CO2 3.37 95.0 44.01 87.90 1069.87 0.225 0 
C1 8.61 5.0 16.04 116.59 667.20 0.008 0.055 
C2-3 15.03 0.0 37.20 159.90 652.56 0.131 0.055 
C4-6 16.71 0.0 69.50 374.13 493.07 0.240 0.055 
C7-15 33.04 0.0 140.96 630.68 315.44 0.618 0.105 
C16-27 16.11 0.0 280.99 892.16 239.90 0.957 0.105 
C28+ 7.13 0.0 519.62 1236.79 238.12 1.268 0.105 
 *All others are 0.0.

take 70% of the total simulation time, where 14% is for stability 
analysis and 56% is for flash calculations. Table 4 also shows that 
when the method of Young and Stephenson (1983) is not used and 
stability analysis for a single phase is performed for all single-
phase cells, the phase equilibrium calculations take 76% of the 
total simulation time. Thus, there is a 6% savings in time by not 
always performing stability calculations in this example. In this 
example, there is only a small difference in the simulation results 
using the two methods.

The total simulation time could be significantly increased 
because of the reduction in automatic timestep sizes that may result 
when nonconvergence occurs in phase equilibrium calculations 
(Okuno 2009; Okuno et al. 2009). Simulations where convergence 
problems exist may not even be possible to complete to required 
injection times. There are a variety of problems that can occur in 
compositional simulation, but our algorithm eliminates convergence 
problems associated with multiphase constant K-flash calculations.

Conclusions
We formulated the constant-K flash calculation with NP phases as 
a minimization of a nonmonotonic convex function with NC linear 
constraints. The behavior of the minimization function was inves-
tigated in detail to develop a robust and practical algorithm that 
is guaranteed to converge independently of the number of phases 
for both positive and negative flash calculations. The algorithm 
was implemented in a standalone flash code and in UTCOMP, a 
multiphase compositional simulator, where K-values change with 
composition. The conclusions are as follows:
•  Our algorithm is guaranteed to converge because the minimiza-

tion function is convex and because the small feasible region 
developed in this research does not contain zones near poles 
where the Hessian matrix is ill-conditioned.
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•  Procedures for multiphase constant-K flash calculations devel-
oped before this research were shown not to converge for some 
situations or to converge slowly because of large feasible regions 
that are bounded by poles.

•  Our algorithm can improve the reliability and efficiency of 
multiphase compositional simulation as part of rigorous EOS 
flash calculations. Convergence within our K-flash calculation 
is not dependent on the initial guess from a prior flash calcula-
tion because we ensure that the initial guess is in the feasible 
region.

•  Fewer iterations are required for convergence using our algorithm 
because the feasible region is significantly smaller than that 
proposed in prior research. We demonstrated that, even for five 
equilibrium phases, our algorithm requires only six iterations at 
most in 1 million flash calculations with different K-values that 
were generated randomly. 

Nomenclature
 a =  matrix with elements (1−Kij) for i = 1, …, NC, j = 1, …, 

NP−1
 b =  vector with elements min{1−zi, minj{1−Kijzi}} for i = 

1, …, NC, j = 1, …, NP−1
 d =  vector representing a search direction to update indepen-

dent variables in iterative solution
 fj = jth Rachford-Rice equation
 f = vector with elements fj

 F = convex function to be minimized, defi ned by Eq. 9
 H = Hessian matrix
 J = Jacobian matrix
 Kij = K-value of component i in phase j
 L = constraint set: {� | ti ≥ 0, i = 1, …, NC}
 L� = constraint set: {� | ti > 0, i = 1, …, NC}
 NC = number of components
 NP = number of phases
 P = constraint set: {� | �j ≥ 0, j = 1, …, NP}
 PC = critical pressure
 S = constraint set defi ned by Eq. 10 or phase saturation
 TC = critical temperature
 ti = term defi ned in Eq. 6
 xij = component mole fraction of component i in phase j
 zi = component mole fraction of component i in a mixture
 �j = jth phase mole fraction
 � = phase-mole-fraction vector with elements �j

 � =  step size to update independent variables in iterative 
solution

 �ij = fugacity coeffi cient of component i in phase j

Superscripts
 n = index for iteration steps
 T = transpose
 −1 = inverse

Fig. 14—(a) Oleic-phase distribution at 0.45 PVI. (b) Gaseous-phase distribution at 0.45 PVI. (c) CO2-rich liquid-phase distribution 
at 0.45 PVI. (d) Distribution of the number of hydrocarbon phases at 0.45 PVI.

TABLE 4—COMPUTATIONAL TIME REQUIRED  FOR SIMULATION CASE STUDY 

Limited Use of One-Phase Stability Analysis  One-Phase Stability Analysis Used for All One-Phase Cells
  

Time (seconds) Percentage Time (seconds) Percentage 

Overall simulation 1,829 100 2,209 100 
Phase equilibrium 1,277 70 1,671 76 

1 phase 98 5 497 23 Stability 
analysis 2 phases 161 9 159 7 

2 phases 590 32 587 27 Flash 
calculations 3 phases 428 23 427 19 
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Subscripts
 C = critical property or component
 i = component index
 j = phase index
 k = phase index
 max = maximum
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Appendix A
Fig. A-1 is a flow chart of multiphase equilibrium calculations in 
UTCOMP from Chang (1990).

Appendix B—Algorithm for SS
Initial estimates for each grid cell in compositional simulation are 
determined by either the previous timestep or stability analysis or 
correlations such as that of Wilson (1969). The steps for SS that 
we use in this paper are

1. Obtain initial estimates for (NP−1) sets of NC K-values.
2. Calculate phase mole fractions and phase compositions by 

solving (NP−1) RR equations (see Eq. 8).
3. Calculate compressibility factors and fugacity coefficients 

for NP phases using any cubic EOS. In this paper, we use the 
Peng-Robinson EOS (Peng and Robinson 1976).

4. Check for convergence based on the residuals of the fugac-
ity equations, Eq. 1. If convergence is achieved, stop. Otherwise, 
continue to Step 5.

5. Update the (NP−1) sets of K-values based on the fugacity 
equations using ln ln lnKij iN ijP

= −� � , where �ij is the fugacity 
coefficient of component i in phase j.

6. Go to Step 2.

Appendix C—Convexity of the Function To 
Be Minimized
We give a proof for the convexity of our minimization function, 
which is similar to the one by Michelsen and Mollerup (2004) for 
their minimization function. We also provide details for the case 
when a constant-K flash problem has no solution. 

A gradient vector of the function F consists of the RR equa-
tions, while the Hessian matrix consists of the derivatives of the RR 
equations with respect to the independent variables. That is,

∇ = = { } ∈ −( )F f f j
NP 1

and 

∇ = { } = ∂ ∂{ } ∈ −( )× −( )2 1 1F H fkj j k
N NP P� ,

where 

∂ ∂ = − −⎡⎣ ⎤⎦ =
=∑f K K z t Y DYj k ij ik i i

T

i

NC
� ( )( )1 1 2

1
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and

D z zN
N N

C

C C= ( ) ∈ ×diag 1,...,

Y Y K tij ij i
N NC P= { } = −( ){ } ∈ × −( )1 1

.

The matrix D is positive definite because zi (i = 1, …, NC) are all 
positive.

Using the Gibbs phase rule, the degree of freedom in an iso-
baric- and isothermal-flash calculation is (NC−NP). Because the 
degree of freedom must be nonnegative, NP ≤ NC for problems 
considered in this research. In addition, if the NC×(NP−1) matrix 
Y is of full rank, we have Yy ≠ 0 for any vector y ≠ 0. 

Considering the positive definiteness of D, we can prove the 
positive definiteness of the Hessian matrix Y TDY as follows:

y Y DY y Yy D Yy yT T T( ) = ( ) >( ) 0 for all vector .

The proof holds for both positive and negative flash calculations 
where one or more phase mole fractions are negative. However, it 
does not hold for another kind of negative flash where an overall 
composition lies in negative composition space (i.e., D is not 
positive definite). We do not consider this type of negative flash 
in this paper. 

If Y is not of full rank, the Hessian matrix is only positive 
semidefinite and there exists a vector along which the function 
value does not change. To see this, suppose that the pth and qth 
columns of the matrix Y or a NC×(NP−1) matrix {1−Kij} are linearly 
dependent. Then, there exists a constant � such that

1 1−( ) = −( )K K iip iq� for all .

Then, the pth and qth columns of the Hessian matrix become 
linearly dependent as shown below.

Fig. A-1—Flow chart of multiphase equilibrium calculations in UTCOMP.

H f K K z tkp p k ip ik i ii

NC= ∂ ∂ = −( ) −( )⎡⎣ ⎤⎦
=

=∑�

�

1 1

1

2

1

−−( ) −( )⎡⎣ ⎤⎦ =
=∑ K K z t Hiq ik i ii

N

kq
C 1 2

1
� .

The Hessian matrix, therefore, is only positive semidefinite for this 
case. This is also confirmed by the function values that are constant 
along a vector d with (1−K1q) for pth, −(1−K1p) for qth, and zeros 
for the other elements. That is,

d F K K z t

K

t
q ip i ii

N

p

c∇ = −( ) −( )⎡
⎣

⎤
⎦

− −( ) −

=∑1 1

1 1

1 1

1 KK z t

z t K K

iq i ii

N

i i q iq

c ( )⎡
⎣

⎤
⎦

= ( ) −( ) −( ) −

=∑ 1

11 1� �� 1 1 011
−( ) −( )⎡⎣ ⎤⎦ =

=∑ K Kq iqi

NC .

Appendix D—Line-Search Algorithm
The line search minimizes the following function over the region 
0 ≤ s ≤ 1:

g s F s d( ) = +( )� �max
.

Considering the convexity of the function, if the gradient is non-
positive at the initial point s = 1, we do not perform the line search 
taking s = 1 as a solution. The procedure is

1. Set an initial estimate for s to unity and an iteration index 
n to zero.

2. Calculate the first-order derivative of g as shown next. If the 
absolute value of the first-order derivative is less than a specified 
tolerance, then stop. Otherwise, continue to Step 3.

dg ds F s d d
n n

T( ) = ∇ +( )⎡⎣ ⎤⎦� � �max max .

3. Calculate the second-order derivative of g.
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d g ds d F s d d
n T n2 2 2 2( ) = ( ) ∇ +( )⎡⎣ ⎤⎦� � �max max .

4. Update the iteration variable s.

s s dg ds d g dsn n n n+ = − ( ) ( )1 2 2 .

5. Let n = n + 1, and go back to Step 2.

Conversion Factors
 ft × 3.048* E–01 = m
 °F × (°F−32)/1.8  = °C
 psi × 6.894 757 E+00 = kPa

*Conversion factor is exact.
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