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Summary
Simulating gas-injection processes requires a compositional model 
to predict the fluid properties resulting from mass transfer between 
reservoir fluid and injection gas. A drawback of compositional 
simulation is the efficiency and robustness of phase equilibrium 
calculations. Reduced methods for phase equilibrium calculations 
have been studied as a potential solution to improve the efficiency 
of compositional simulation. However, most of those studies have 
been performed only in standalone calculations, and the robustness 
and efficiency of a reduced method has not been confirmed in 
compositional simulation. In this research, we develop a robust 
and efficient algorithm for a reduced method and validate it in 
compositional simulation.

We examine the efficiency and convergence property of the con-
ventional algorithm for a reduced method and solve several imple-
mentation problems in a compositional simulator. The reduced 
method is implemented in UTCOMP, a compositional implicit-
pressure/explicit concentration (IMPEC) simulator, to demonstrate 
the performance for various numbers of components and degrees 
of miscibility. The results show that the reduced method enables 
significant savings in execution time of compositional simulation 
without loss of accuracy compared to standard methods. Also, we 
observe that the reduced method exhibits improved robustness, 
especially for miscible processes where composition paths go near 
critical regions.

Introduction
Phase-behavior algorithms can significantly affect the efficiency 
and reliability of compositional simulation. This is because most 
phase-behavior algorithms iteratively solve nonlinear equations to 
predict the number of coexisting phases and phase properties. Phase-
behavior calculations become more difficult, time-consuming, and 
important as multicontact miscibility is approached. 

Phase-behavior calculations in compositional simulation consist 
of stability analysis and flash calculations. To improve the efficiency 
of the flash calculations, a noniterative procedure was developed 
by Stenby and Wang (1993). They concluded that their procedure 
can decrease the simulation time usually by a factor of two with 
reasonable accuracy. However, because their noniterative procedure 
approximates phase compositions and amounts on the basis of linear 
extrapolation from the previous timestep, the simulation accuracy 
is highly problem-dependent. For example, the procedure could 
cause significant errors in simulation of miscible-gas injection with 
a large number of grid cells, large timesteps, and a long simulation 
period. Such a difficult case for the noniterative procedure was not 
tested in their paper.

A desirable approach to an efficient simulation is to reduce 
computational time without loss of accuracy. A reduced method that 
originated with Michelsen (1986) has been studied as a potential 
solution. One of the main problems with the development of reduced 
methods was how to handle nonzero binary interaction coefficients 
(BICs) (Jensen and Fredenslund 1987; Hendriks 1988; Hendriks and 
van Bergen 1992; Kaul and Thrasher 1996). Li and Johns (2006) 
proposed an approach in which two sets of component-specific 
parameters were introduced to develop the BIC matrix. In this 

research, we use Li and Johns’ approach because of its simplicity 
and flexibility.

Other previous studies on reduced methods include comparisons 
of algorithms, as well as application to stability analysis and 
multiphase calculations (Firoozabadi and Pan 2002; Nichita et al. 
2002, 2006; Pan and Firoozabadi 2003; Hoteit and Firoozabadi 
2006). A few papers reported implementation of a reduced method 
in a compositional simulator, but only for flash calculations, not 
stability analysis. Wang and Barker (1995) applied Michelsen’s 
reduced flash (RF) calculations in a compositional simulator, con-
cluding that the RF does not offer significant savings in simulation 
time. Honami et al. (2000) reported simulation case studies using 
RF calculations in which simulation results were different from 
those with a commercial simulator.

To the best of our knowledge, no paper reports the efficiency 
and robustness of reduced methods applied to both stability and 
flash calculations in compositional simulation. In this research, 
we improve problems of currently used algorithms for reduced 
stability and flash calculations. Then, we implement the improved 
reduced method in a compositional simulator to demonstrate con-
clusively the efficiency and robustness of our method.

Formulation and Algorithms
In this section, we present the reduced parameters used in this 
research. We then derive formulations of the reduced flash and 
stability analysis and present practical algorithms to solve the 
formulated problems.

Reduced Parameters. The Peng-Robinson equation of state 
(EOS) (Peng and Robinson 1976) is used with the van der Waals 
mixing rules throughout this research, although any cubic EOS can 
be used. To handle nonzero BICs, Li and Johns (2006) introduced 
two sets of component-specifi c parameters to replace BICs:
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and
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The parameters hi and gi can be considered as fitting param-
eters to represent the BICs or, better yet, to match pressure/
volume/temperature (PVT) data directly; the parameters hi and 
gi could replace BICs during fluid characterization. As long as 
the characterized fluid model using the parameters hi and gi 
can predict the phase behavior accurately, the reduced phase-
equilibrium calculations are as accurate as the conventional cal-
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Fugacity coefficients for a phase can be expressed as func-
tions of the five reduced parameters for the corresponding phase 
(see Appendix A). As described later, the numbers of independent 
variables for the reduced flash and stability analysis are six and 
five, respectively, regardless of the number of components (Nc). 
Therefore, the reduced method can decrease the dimension of the 
system of equations to be solved when more than six components 
are used in the calculations. The reduced dimension can be exploited 
when the Newton method is used to solve either the stability analysis 
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or flash calculations. In this research, the reduced method is applied 
with the Newton method and initiated by the conventional successive 
substitution (SS) both for stability analysis and flash calculations. 
This successive use of SS and the Newton method is commonly 
applied in compositional reservoir simulation because the Newton 
method is quadratically convergent only when a good initial estimate 
of the parameters is given. SS is linearly convergent with a much 
larger region of convergence compared to the Newton method.

Reduced Flash Calculations. We now derive a practical and 
robust algorithm for two-phase reduced fl ash calculations. The 
most fundamental formulation for fl ash calculations at given 
temperature and pressure is minimization of the Gibbs free energy. 
An alternative and conventional formulation is to solve a system of 
fugacity equations, which corresponds to the fi rst-order necessary 
condition of the minimization of the Gibbs free energy. In this 
research, our formulation is based on the fugacity equations. The 
fl ash calculation is to solve the following equations:

Fugacity equations: 
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Component material balance equations: 
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Overall material balance equation: 
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Summation conditions: 
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In a conventional flash algorithm, the above equations are solved 
with Nc independent variables (Fussell and Yanosik 1978; Nghiem 
et al. 1983). 

Rearranging Eq. 1, K values become functions of 10 reduced 
parameters.
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Considering the material balance Eqs. 2 and 3, �k
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 and k = ⋅⋅⋅1 5, , . Therefore, K values are func-

tions of the six parameters, L and �k
L (k = 1,..,5). Once K values are 

calculated, phase compositions are computed directly as

x z L K Li i i= + −[ ]( )1 and y K xi i i= ,  . . . . . . . . . . . . . . . . . . (7)

where i Nc= ⋅⋅⋅1, , . Because phase mole fractions and component 
mole fractions are functions of the six parameters, the flash calcu-
lations can be formulated in terms of the six independent variables. 
Component mole fractions calculated by Eq. 7 do not necessarily 
satisfy Eq. 4. In the reduced method, Eq. 4 is satisfied once con-
vergence is achieved because it is part of the system of equations 
to be solved as described later.

The nonlinear equations to be solved in the reduced flash are
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matrix is 6×6 regardless of Nc used in the flash calculations. Therefore, 

solution of a system of equations by the Newton method is faster for 
the RF than that for the conventional flash for fluids with more than 
six components.

The algorithm developed for the RF is as follows:
1. Calculate �k

z (k=1,...,5).
2. Obtain initial estimates for the six independent variables, �j 

( j=1,…,6), based on the solution from successive substitution.
3. Calculate �k

V (k=1,...,5) using Eq. 6.
4. Calculate compressibility factors and fugacity coefficients for 

liquid and vapor phases using the EOS. When the cubic EOS has 
multiple roots of the compressibility factor, the correct root is selected 
that results in the lowest Gibbs free energy (Evelein et al. 1976).

5. If max{|Fi|} < �, stop; otherwise, continue to Step 6.
6. Calculate K values using Eq. 5 based on the fugacity coef-

ficients in Step 4.
7. Calculate compositions for liquid and vapor phases using 

Eq. 7.
8. Calculate the residuals of Eq. 8.
9. Construct the 6×6 Jacobian matrix analytically (see Li and 

Johns 2006) and solve the system of equations.
10. Update the six independent variables �j ( j=1,…,6).
11. Repeat Steps 3, 4, 6, and 7, and update the independent 

variables except for �6 (= L).
12. Go to Step 3.
The above algorithm is different from that of Li and Johns 

(2006), which uses the basic Newton method to solve the system 
in the reduced space (i.e., go to Step 3 after Step 10). As will be 
shown, the above algorithm improves the convergence behavior 
near critical points. Also, the stopping criterion is based on the 
fugacity equations alone in the above algorithm. This is an impor-
tant issue in practice and will be discussed in the Simulation Case 
Studies section.

To demonstrate the improved convergence behavior of our 
algorithm for RF calculations (improved RF), we compare it with 
the following three algorithms: the basic algorithm for RF calcula-
tions (basic RF) (Li and Johns 2006), minimization of the Gibbs 
free energy with respect to component mole numbers in a phase 
(MG) (Perschke et al. 1989), and solution of fugacity equations 
with respect to K values (FK) (Nghiem et al. 1983). Fig. 1 shows 
the convergence behaviors in terms of the residuals of the fugacity 
equations, Eq. 1, with different algorithms. The fluid used is Oil A 
of Li and Johns (2006) at 484°F and 1,044.62 psia for a near-criti-
cal mixture (Table 1). The initial estimates are given by SS with a 
switching criterion to the Newton iteration when max{|Fi|} < 10−3. 
The convergence rate for each algorithm is linear for the first eight 
iterations, indicating that the switching point from SS to the Newton 
method is not within the region of the quadratic convergence of the 
Newton method. Nevertheless, the Newton method should be used 
in the final iterations because using SS alone requires more than 
78,000 iterations to reduce max{|Fi|} from 10−3 to 10−8, compared 
to 10 iterations for the improved RF. The basic RF can take almost 
twice the number of iterations compared with the improved RF 
when a stopping criterion of max{|Fi|} < 10−6 is used. The behavior 
of the basic RF results from the fact that the reduced method solves 
the fugacity equations, Eq. 1, only indirectly. The improved RF also 
solves the fugacity equations indirectly, but the improved algorithm 
eliminates the undesirable convergence behavior. The convergence 
behavior of our improved RF is remarkable considering its simplic-
ity because it can converge with a smaller number of iterations than 
MG, which uses a line-search technique to enhance the convergence. 
FK is not shown in the figure because, for this case, it converges to 
the trivial solution where the vapor- and liquid-phase compositions 
are identical. Although the improved RF requires 20% more calcula-
tion time per iteration than the basic RF, the tradeoff is worth the 
increased robustness.

When implemented in a simulator, we found that the improved 
RF rarely converged to the trivial solution for extremely difficult 
cases in which overall compositions are very near the binodal curve 
in the critical region. For these few cases, the flash calculation 
is repeated where the Rachford-Rice equation (1952) is solved 
in Step 11 to obtain phase compositions and mole fractions and 
update the six independent variables. This procedure makes the 
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summation conditions, Eq. 4, satisfied at each iteration and tends 
to avoid the trivial solution. Besides, one may avoid the trivial 
solution by selecting the independent variables between (�1

L, .., �5
L, 

L) and (�1
V, .., �5

V, V) on the basis of values of L and V (Fussell 
and Yanosik 1978).

Reduced Stability Analysis. In this section, we derive an algo-
rithm for stability analysis using the reduced method. A common 
numerical method for stability analysis is to search for a phase 
composition at which the tangent plane distance (TPD) function is 
negative (Michelsen 1982). If such a phase composition is found, 
the current phase with composition z– is unstable. Otherwise, the 
current phase is assumed to be stable. The stationary point method 
of Michelsen locates stationary points on the TPD function and 
checks the sign of the TPD function to identify phase stability.

For stability analysis of a single-phase mixture, the location 
of stationary points is performed using vapor- and liquid-like 

initial estimates based on K values from Wilson’s correlation 
(1969). If the first calculation with a vapor-like (or liquid-like) 
estimate converges either to the trivial solution or to a nontrivial 
solution with a positive value of the TPD function, then the 
second calculation starts with a liquid-like (or vapor-like) estimate 
searching for phase instability. If the two calculations do not 
identify phase instability, the current phase with composition z– is 
assumed to be stable. If either set of the calculation identifies phase 
instability, the stability analysis is followed by a flash calculation to 
obtain the two-phase solution. An integral part of the algorithm is 
to locate stationary points, and the reduced method can be applied 
there. The following stationarity equations should be satisfied at a 
stationary point of the TPD function:

S X x z zi i i i i= + ( ) − ( ) =ln ln ln� � 0 i Nc= ⋅⋅⋅( )1, , .  . . . . . . . . (9)

In a conventional algorithm, Eq. 9 is solved with the independent 
variables of Xi (i=1,…,Nc). The mole fractions are calculated as 

x X Xi i jj
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Rearranging Eq. 9, all variables are functions of the five reduced 
parameters. That is,
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and we need only five equations to solve the original problem of 
Nc dimensions. The nonlinear equations to be solved for reduced 
stability analysis are
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The size of the Jacobian matrix is 5×5 regardless of Nc, which 
makes the solution of a system of equations faster for the reduced 
method than for the conventional method. The reduced method 
is switched from SS when a specified criterion is satisfied (e.g., 
max{|Si|} < 10−3). The algorithm for locating a stationary point 
using the reduced method is as follows:

1. Calculate compressibility factors and fugacity coefficients 
for the phase with composition z–. When the cubic EOS has multiple 
roots in the compressibility factor, the correct root is selected to 
result in the lowest Gibbs free energy (Evelein et al. 1976). This 
is also true for Step 5 below. 

2. Obtain initial estimates for Xi (i=1,…,Nc) from successive 
substitution.

3. Calculate mole fractions using Eq. 10.
4. Calculate the five reduced parameters.
5. Calculate compressibility factors and fugacity coefficients 

for the phase with composition x as functions of �.
6. If max{|Si|} < �, stop; otherwise, continue to Step 7.
7. Calculate residuals of Eq. 12.
8. Construct the 5×5 Jacobian matrix analytically (see Okuno 

2009) and solve the system of equations.
9. Update the five reduced parameters.

Fig. 1—Comparisons of the convergence behaviors of different 
algorithms for a near-critical mixture. (a) Flash calculations. (b) 
Stability analysis.

TABLE 1—EOS PARAMETERS FOR OIL A * 

 Mole fraction (Mol %) Tc  (°F) Pc (psia) Acentric factor h g BIC CO2 BIC C1 BIC n-C10** 

CO2 5.0 87.90 1069.87 0.225 1.0 1.170 0.000 0.144 0.114 
C1 10.0 –116.59 667.20 0.008 0.3 0.250 0.144 0.000 0.071 
C2 12.0 90.05 708.35 0.098 0.0 0.103 0.120 0.002 0.040 
C3 12.0 205.97 615.76 0.152 0.0 0.103 0.120 0.002 0.040 
n-C4 15.0 305.69 551.10 0.193 0.0 0.103 0.120 0.002 0.040 
n-C5 17.0 385.61 489.38 0.251 0.0 0.103 0.120 0.002 0.040 
n-C10 29.0 652.01 305.68 0.490 2.0 0.098 0.114 0.071 0.000 

* From Li and Johns (2006). 
** All others are 0.0. 

** **
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10. Repeat Step 5 and calculate Xi (i=1,…,Nc) using Eq. 11.
11. Go to Step 3.
The algorithm presented here is different from the basic Newton 

method to solve the system in the reduced space (i.e., go to Step 5 
after Step 9). A main difference is that our algorithm takes one 
SS step inside the iteration loop, which improves the convergence 
behavior near critical points. 

Fig. 1 compares the convergence behaviors in terms of residuals 
of the stationarity equations, Eq. 9, with the following algorithms: 
the improved algorithm for reduced stability analysis (improved 
RSA), the basic Newton method to solve the reduced system Eq. 
12 (basic RSA), and the conventional stability analysis with direct 
solution of the stationarity equations with respect to the Nc independ-
ent variables (CSA). The fluid used in the comparison is Oil A of 
Li and Johns (2006) for a near-critical mixture (Table 1). The initial 

estimate for the Newton iteration of the stability analysis is given 
by SS with a switching criterion of max{|Si|} < 10−3. Both the basic 
and improved RSA solve the stationarity equations only indirectly, 
but the improved RSA does not exhibit the undesirable convergence 
behavior of the basic RSA as shown in Fig. 1. Although the improved 
RSA requires 30% more calculation time per iteration than the basic 
RSA, the tradeoff is worth the increased robustness. The results 
show that the basic RSA can take almost twice the number of itera-
tions compared with the improved RSA when a stopping criterion 
of max{|Si|} < 10−6 is used. The improved RSA can converge in an 
even smaller number of iterations than CSA, which directly solves 
the stationarity equations with the Nc independent variables.

Hoteit and Firoozabadi (2006) reported that the minimum of 
the TPD function obtained by local minimization algorithms can 
be discontinuous in a single-phase region in P-T space. They also 
reported that numerical algorithms for stationary points can exhibit 
poor convergence behavior near the discontinuity. However, they 
did not discuss what causes the discontinuity and convergence 
problems. In Appendix B, we demonstrate the appearance of the 
discontinuity for a binary mixture as the pressure changes at a fixed 
temperature. The poor convergence can result from a saddle point 
on the TPD function. A saddle point appears at the outer boundary 
of the “shadow-phase region” of Rasmussen et al. (2006). The 
shadow-phase region is where Eq. 9 has two solutions—the trivial 
solution and a nontrivial solution with a positive value for the TPD 
function. Although several potential remedies for the convergence 
problem are discussed in Appendix B, we implement the procedure 
of Hoteit and Firoozabadi (2006). The maximum number of 
iterations is limited to 15, and the single-phase mixture of interest 
is assumed to be stable when convergence cannot be achieved 
within the maximum number of iterations. 

Comparisons in Standalone Calculations
As described in the previous section, the reduced method solves 
equations that are not directly related to the fugacity equations, 
Eq. 1, for flash calculations, and stationarity equations, Eq. 9, for 
stability analysis. Although Fig. 1 demonstrated that the improved 
reduced method can converge in fewer iterations than other algo-
rithms for the same initial estimate, we investigate further the 
robustness and efficiency of the reduced method. From this point 
on, we consider only the improved RF and the improved RSA.

Robustness. For fl ash calculations, we compare the robustness of 
the algorithms RF and FK, both of which use a simple solution of 
the nonlinear equations using the Newton method. The compari-
sons are based on the number of SS steps required for the Newton 
method to converge to a correct solution. A smaller number of SS 
steps required would indicate that the function behaves favorably 
for the Newton method within a wider region around the solution. 
Flash calculations for Oil A (Table 1) are performed at different 
conditions along the line on the P-T diagram shown in Fig. 2. 
The initial estimates used in the calculations are generated by 
Wilson’s correlation (1969). As shown in Fig. 2, the number of SS 
steps required is a strong function of the distance from the critical 
point. RF requires a smaller number of SS steps than FK at all the 
conditions studied here. The advantage of RF against FK becomes 
signifi cant in the critical region. This behavior is favorable because 
robustness of algorithms in the critical region is important in the 
simulation of gas injection where the compositional path can go 
near or through the critical region.

For stability analysis, we compare RSA with CSA. The com-
parisons are based on the number of iterations taken by the Newton 
method. The initial estimates are again generated by Wilson’s cor-
relation. Fig. 2 shows that the number of iterations increases as the 
conditions become close to the critical region. CSA converges in up 
to twice the number of iterations compared with RSA, indicating 
the robustness of the reduced method. It should be noted that both 
algorithms need no SS step for the Newton iteration to converge 
to a correct solution for all conditions studied here.

Effi ciency. The total calculation time of an iterative standalone 
algorithm is approximately a product of the calculation time per 

Fig. 2—(a) P-T diagram of Oil A showing the conditions used 
in the comparisons. (b) The number of SS steps required for 
the second-order flash algorithms to converge. (c) The number 
of iterations taken by different second-order algorithms for 
stability analysis.
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iteration and the number of iterations. As shown in Figs. 1 and 2, 
the reduced method generally takes a smaller number of iterations 
than the others. Therefore, comparisons of calculation time per 
iteration would demonstrate the effi ciency of the reduced method 
in standalone calculations. The computations are performed using 
a Pentium 4 processor at 3.0 GHz and 2.0 GB of RAM throughout 
this research.

A significant part of calculation time per iteration can be spent 
in construction of the Jacobian or Hessian matrix, and solution of 
the systems by the Newton method. The reduced method decreases 
the calculation time by decreasing the size of the Jacobian matrix. 
We again use Oil A. Fig. 3 shows that the calculation time per 
iteration is much shorter for the reduced method than for the others. 
The advantage of the reduced method increases rapidly with Nc 
because the number of equations to be solved is fixed for the 
reduced method, while those for MG and FK increase with Nc. The 
results are consistent with an algebraic fact that, if a direct solver 
is used, the solution of the system of equations requires operation 
counts on the order of the cube of the number of equations.

The significant speed-up of the reduced method is not only 
because of the rapid solution of the system of equations, but also 
because of rapid construction of the Jacobian matrix. Rasmussen 
et al. (2006) stated that construction of the Jacobian matrix for a 
reduced method is cumbersome. Fig. 4 compares the calculation 
time spent in the construction of the Jacobian or Hessian matrix for 
different algorithms for flash and stability analysis. The calcula-
tion time spent in the construction of such a matrix is shorter for 
the reduced method for all cases except for the seven-component 
stability analysis case. The computational cost of construction of 
the Jacobian or Hessian matrix depends on how directly the func-
tions are related to the independent variables. The reduced param-
eters explicitly express fugacity coefficients, which are important 
thermodynamic state functions in phase equilibrium calculations 

(see Appendix A). In Fig. 4, the Jacobian matrix construction in 
FK is more time-consuming than those in the other algorithms. 
This is because K values are related to fugacity in a significantly 
indirect manner. The construction of the Hessian matrix in MG 
is computationally inexpensive because the matrix is symmetric 
and because the function has a relatively direct relation to the 
independent variables.

Simulation Case Studies
Standalone calculations are necessary but not sufficient for the 
algorithms to be practically workable in a simulator. The algo-
rithms developed in this research are implemented in UTCOMP, 
which is an IMPEC compositional simulator originally developed 
by Chang et al. (1990). Perschke et al. (1989) developed the 
phase-behavior algorithms in the original UTCOMP. The algo-
rithms consist of accelerated SS and minimization of the Gibbs 
free energy for flash calculations, and the stationary point method 
and minimization of the TPD function for stability analysis. All 
the calculations are performed in conventional Nc space. In this 
research, we replaced the accelerated SS with the normal SS to 
robustly initiate the second-order convergence method.

The main factors making phase-equilibrium calculations time-
consuming and difficult are the number of components and the 
degree of miscibility. To demonstrate the robustness and efficiency 
of the reduced method, simulation case studies are conducted using 
UTCOMP with three different combinations of the algorithms: 
(RSA, RF), (CSA, MG), and (CSA, FK). Gas injection in a quarter 
five-spot pattern with a stochastically generated permeability field 
is simulated with a varying number of components and degree of 
miscibility using a 2D reservoir model. The reservoir properties and 
fluid properties are summarized in Tables 2 and 3, respectively. 
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Fig. 3—Execution time per iteration with different algorithms. 
(a) Flash calculations. (b) Stability analysis.
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algorithms. (a) Flash calculations. (b) Stability analysis.
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The permeability field used and an oil saturation distribution 
before breakthrough are shown in Fig. 5. The number of compo-
nents is varied from 7 to 20. When more than seven components 
are used, the heaviest pseudocomponent, C25+, is split to as many 
components as needed with the same properties. The degree of 
miscibility is varied by changing reservoir pressure at a constant 
temperature of 260°F. The minimum miscibility pressure (MMP) 
calculated by the PVTsim software of Calsep is 3,626 psia at the 
reservoir temperature. In each case, the injection gas is injected 
for one pore volume (PV).

For stability and flash calculations, the second-order conver-
gence methods are initiated by SS. The switching criteria are 
max{|Si|} < 10−3 for stability analysis and max{|Fi|} < 10−3 for 
flash calculations. The stopping criteria of the Newton methods 
are max{|Si|} < 10−8 for stability analysis and max{|Fi|} < 10−8 
for flash calculations. In addition, CSA, MG, and FK use a rela-
tive step size criterion, max{|��i/�i|} < 10−8, where �i is the ith 
independent variable and ��i is the updated amount for �i. The 
stopping criteria for the reduced method are based neither on the 
residuals of the reduced equations, Eqs. 8 and 12, nor on the rela-
tive step size. That is, the RF uses residuals of fugacity equations 
alone as the stopping criterion. We observed a case in which the 
maximum norm of the reduced flash equations is 10−9, while that 
of fugacity equations is 10−3. Pan and Firoozabadi (2003) reported 
similar observations. Therefore, the residuals of the reduced equa-
tions should not be used for determination of convergence of the 
reduced method.

One of the popular algorithms for stability analysis is a quasi-
Newton method to minimize the TPD function using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method for the inverse of the 
Hessian matrix approximation (Michelsen 1982). The BFGS quasi-
Newton method is superlinearly convergent at best and can avoid 
solution of the system of equations at the expense of curvature 
information used in the iteration. That is, the BFGS quasi-Newton 
method can take more iterations than the Newton method at less 
computational effort per iteration. Ammar and Renon (1987) 
compared various algorithms for minimization of the Gibbs free 

energy including the Newton and BFGS quasi-Newton methods. 
Their comparisons showed that the Newton method requires 
shorter execution time than the BFGS quasi-Newton method in all 
cases studied in their paper. In this research, we do not consider 
the BFGS quasi-Newton method both for stability analysis and 
flash calculations, although it can be applied to both conventional 

TABLE 2—RESERVOIR PROPERTIES  
IN THE SIMULATION CASE STUDIES 

Dimensions 1,000 1,000 20 ft  
Number of grid cells 20 20 1 

Porosity 0.25 
Mean permeability 113 md 

Dykstra-Parsons coefficient 0.74 
Correlation length 300 ft 

Reservoir temperature (water/oil/gas) 260°F 
Residual saturation (water/oil/gas) 0.25/0.20/0.05 

Endpoint relative permeability (water/oil/gas) 0.21/0.70/0.35 
Exponent of Corey model (water/oil/gas) 1.5/2.5/2.5 

Initial saturation (water/oil/gas) 0.25/0.75/0.00 

TABLE 3—FLUID PROPERTIES USED IN SIMULATION CASE STUDIES 

 Oil (Mol %) Gas (Mol %) Molecular weight Tc (°F) Pc (psia) Acentric factor h g BIC CO2* 

CO2 0.77 1.0 44.01 87.90 1071.60 0.225 1 1 0 
C1 20.25 65.0 16.04 –116.59  667.20 0.008 0 0.1318 0.1318 
C2–3 11.80 30.0 38.40 158.88 653.37 0.130 0 0.1318 0.1318 
C4–6 14.84 4.0 72.82 379.87 485.94 0.244 0 0.1318 0.1318 
C7–14 28.63 0.0 135.82 625.86 351.54 0.600 0 0.09885 0.09885 
C15–24 14.90 0.0 257.75 861.15 261.51 0.903 0 0.09885 0.09885 
C25+ 8.81 0.0 479.95 1202.09  250.31 1.229 0 0.09885 0.09885 
* All others are 0.0. 

(a) 

(b)

Fig. 5—(a) Randomly generated permeability field in md. (b) Oil 
saturation distribution at 0.25 PV for the immiscible case.
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and reduced methods. We investigate the effect of the number 
of equations to be solved for phase-equilibrium calculations on 
the efficiency of reservoir simulation, instead of the effect of the 
convergence rate near the solution or the curvature information 
used in the iteration.

In the simulation case studies, stability analysis for a single 
phase is performed only for well cells and cells adjacent to two-
phase cells. Flash calculations are performed for grid cells where 
two phases existed at the previous timestep or stability analysis 
indicates instability of a single phase.

Immiscible Case. For this case, the initial, injection, and produc-
tion pressures are set to 2,850, 2,900, and 2,400 psia, respectively. 
This case is relatively easy for phase-equilibrium algorithms 
because the thermodynamic conditions are far from miscibility. 
All algorithms converge with no failures and lead to exactly the 
same simulation results (Fig. 6). Location of a stationary point 
for stability analysis was performed approximately 100,000 times, 

and fl ash calculations were performed approximately 400,000 
times. Average numbers of iterations for RSA, CSA, RF, MG, and 
FK were 1.9, 2.0, 1.6, 1.6, and 1.8, respectively. Table 4 shows 
a breakdown of simulation time for the 10- and 20-component 
cases using the three different combinations of the algorithms. 
For example, use of the algorithms (CSA, FK) took 53% of the 
total simulation time on the phase-equilibrium calculations for the 
10-component case and 66% for the 20-component case. Table 
4 also shows that use of (RSA, RF) resulted in phase-behavior 
calculations that were 63 and 85% faster than when (CSA, MG) 
and (CSA, FK) were used, respectively, for the 10-component case. 
For the 20-component case, the phase-behavior calculations using 
(RSA, RF) were 2.4 and 4.2 times faster than when (CSA, MG) 
and (CSA, FK) were used, respectively. The speed-up comes from 
the decreased calculation time using the Newton method (see Table 
4), in which the reduced method exploits the reduced number of 
equations to be solved. Fig. 6 shows the total simulation time for 
varying Nc and for different algorithms. Compared to the other 
algorithms, the reduced method offers more than 23 and 47% 
speed-up for the 10- and 20-component cases, respectively. 

Multicontact Miscible Case. For this case, the initial, injection, 
and production pressures are set to 4,550, 4,600, and 4,100 psia, 
respectively. This case is more diffi cult for phase-equilibrium 
algorithms because the pressures are above the MMP and fl uids 
are multicontact miscible. Location of a stationary point for stabil-
ity analysis was performed approximately 1.3 million times, and 
fl ash calculations were performed approximately 2.3 million times. 
Average numbers of iterations for RSA, CSA, RF, MG, and FK 
were 1.9, 2.0, 1.3, 1.3, and 1.4, respectively. The RF converged 
to the trivial solution only four times, while the other two fl ash 
algorithms failed more than 20 times. Because of the increased 
failure rate with (CSA, MG) and (CSA, FK), the simulation results 
are not identical, although they are very similar (Fig. 7). The 
nonconvergence of MG and FK are consequences of the round-off 
errors caused by nearly singular Hessian and Jacobian matrices in 
the critical region (Trangenstein 1987). The four cases of a trivial 
solution with the RF occur where compositions are located in the 
vicinity of the binodal curves very near the critical region. In fact, 
liquid phase mole fractions of the correct solutions are L = 0.999, 
0.997, 0.997, and 0.998. 

Table 5 shows a breakdown of simulation time for 10- and 
20-component cases using the three different combinations of 
the algorithms. When using the algorithms (CSA, FK), the phase 
equilibrium calculations spent 57% of the total simulation time 
for the 10-component case and 66% for the 20-component case. 
Also, use of (RSA, RF) resulted in the phase-behavior calculations 
that were 30 and 38% faster than when (CSA, MG) and (CSA, 
FK) were used, respectively, for the 10-component case. For the 
20-component case, the phase-behavior calculations using (RSA, 
RF) were 1.8 and 2.5 times faster than when (CSA, MG) and 
(CSA, FK) were used, respectively. The speed-up is a consequence 
of the reduced number of equations to be solved in the Newton 
iteration using the reduced method (see Table 5). Fig. 7 shows 
the total simulation times with different numbers of components 
and different algorithms. The use of the reduced method results in 
simulations that are more than 15 and 35% faster than those with 
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Fig. 6—Comparisons for the immiscible case. (a) Oil recovery 
is identical for all algorithms. (b) Total simulation time vs. Nc for 
the different combinations of flash and stability algorithms.

TABLE 4—BREAKDOWN OF SIMULATION TIME FOR IMMISCIBLE CASE 

10 components 20 components 

(RSA, RF) (CSA, MG) (CSA, FK) (RSA, RF) (CSA, MG) (CSA, FK) 

Overall simulation (seconds) 123.6 152.6 164.6 296.0 435.7 612.7 

Phase equilibrium (seconds) 47.5 77.3 87.7 96.6 236.3 406.0 

Stability analysis, SS (seconds) 12.2 12.8 12.1 28.5 27.0 30.0 

Stability analysis, Newton (seconds) 4.8 5.2 5.0 8.2 22.7 22.9 

Flash calculations, SS (seconds) 9.5 9.7 9.3 21.3 22.0 21.3 

21.1 49.7 61.3 38.6 164.5 331.9 Flash calculations, Newton (seconds)
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Fig. 7—Comparisons for the multicontact miscible case. (a) 
Oil recovery is identical for all algorithms. (b) Total simulation 
time vs. Nc for the different combinations of flash and stability 
algorithms.

TABLE 5—BREAKDOWN OF SIMULATION TIME FOR MULTICONTACT MISCIBLE CASE 

10 components 20 components 

(RSA, RF) (CSA, MG) (CSA, FK) (RSA, RF) (CSA, MG) (CSA, FK) 

Overall simulation (seconds) 1,010.8 1,164.2 1,214.1 2,352.2 3,186.3 3,926.5 

Phase equilibrium (seconds) 498.6 645.9 690.3 1,051.1 1,867.4 2,588.6 

Stability analysis, SS (seconds) 292.6 292.9 295.0 664.9 678.5 670.8 

Stability analysis, Newton (seconds) 58.2 65.4 64.2 105.5 281.0 278.8 

32.9 34.3 34.2 74.7 77.1 73.0 

114.9 253.2 296.9 205.9 830.8 1,566.0 
Flash calculations, SS (seconds)

Flash calculations, Newton (seconds)

the other algorithms for 10- and 20-component cases, respectively. 
The speed-up factors of the total simulation time are smaller than 
for the immiscible case because part of the simulation time spent 
by the second-order convergence methods is smaller for this case. 
Similarly, if a larger number of grid cells is used, the speed-up fac-
tors will decrease because solution of the pressure equations takes 
a larger part of the total simulation time. Actual saved time, how-
ever, becomes more significant as the phase-equilibrium problems 
become more difficult and the simulation time becomes longer. 
For example, use of (RSA, RF) saved 1,574 seconds compared 
to (CSA, FK) for the multicontact miscible case and 317 seconds 
for the immiscible case. Also, the saved time would be even more 
significant if stability analysis for a single phase were performed 
for all cells, unlike in these case studies.

Conclusions
A robust and efficient algorithm for two-phase equilibrium calcula-
tions using a reduced method was developed and implemented in a 

compositional simulator. The simple algorithm exhibits improved 
convergence behavior near the critical region. Simulation case stud-
ies confirmed that the reduced method can significantly decrease 
compositional simulation time without loss of accuracy. Because of 
the significant speed-up, the use of the reduced method can allow 
for a larger number of components to be used in the simulation 
for improved accuracy of the fluid characterization.

Nomenclature
 Ai = EOS parameter for component i
 Bi = EOS parameter for component i
 fi = fugacity for component i 
 Fi = fugacity equation for component i
 Fj

R = jth equation for reduced fl ash calculations
 gi = parameter of component i for reduced method
 hi = parameter of component i for reduced method
 kij = binary interaction coeffi cient between components i and j
 Ki = K value for component i 
 L = liquid phase mole fraction
 Nc = number of components
 Pc = critical pressure
 Si = stationarity equation for component i 
 Sk

R = kth equation for reduced stability analysis
 Tc = critical temperature
 V = vapor phase mole fraction
 xi  = mole fraction of component i in a liquid phase 
 x = vector with elements xi

 Xi =  independent variable for component i used for conven-
tional stability analysis

 yi = mole fraction of component i in a vapor phase
 zi = mole fraction of component i in a mixture
 z– = vector with elements zi

 Z = compressibility factor
 � = stopping criteria for iterative solution
 �ki =  constant term for component i to defi ne kth reduced 

parameter
 �k = kth reduced parameter
 � = vector with elements �k

 �i = fugacity coeffi cient for component i
 �j = jth independent variables for reduced fl ash calculations
 � = vector with elements �j

Superscripts
 L = liquid phase
 V = vapor phase
 R = reduced method

Subscripts
 c = critical property or component
 i = component index
 j =  component index, or index for variables or equations for 

reduced fl ash calculations
 k =  index for reduced parameters or for equations for reduced 

stability analysis
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Appendix A—Fugacity Coefficients Using 
Five Reduced Parameters
Fugacity coefficients at fixed temperature and pressure using the 
Peng-Robinson EOS (Peng and Robinson 1976) are as follows:
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The fugacity coefficients are functions of five reduced parameters 
because Am, Bm, Z, and ∑jxjAij can be expressed using those five 
reduced parameters. That is,
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Appendix B—Convergence Problem 
in the Region Slightly Outside the 
Shadow-Phase Region
We consider the stability analysis of a binary mixture consisting 
of 20% C1 and 80% n-C20. The critical point of the mixture is 
calculated to be at 911.73°F and 312.63 psia using the Peng-
Robinson EOS (Peng and Robinson 1976). Figs. B-1, B-2, and B-3 
show construction of the dimensionless TPD function (D/RT) at a 
fixed temperature of 800°F and three different pressures of 690, 633, 
and 575 psia, respectively. Those pressures are in the single-phase 
region in the P-T diagram because D/RT is nonnegative in the entire 
xc1 space. The outer boundary of the shadow-phase region at this 
temperature is at 632.7 psia, where a saddle point exists on the TPD 
function. For the case of 690 psia, D/RT has a unique minimum that 
corresponds to the trivial solution. For the case of 633 psia, D/RT 
also has the same unique minimum. However, the gradient becomes 
very close to zero at the inflection point around at xc1 = 0.67. For the 

case of 575 psia, D/RT has two minima; one is the trivial solution, 
and the other is a nontrivial solution with a positive value of D/RT. 
When a local-minimization algorithm is used with a vapor-like initial 
estimate, the algorithm obtains the local minimum at xc1 = 0.76. 
Therefore, when the local minimum of D/RT converges by using 
a vapor-like estimate as the initial guess is plotted as a function 
of pressure, there exists a discontinuity at 632.7 psia, the outer 
boundary of the shadow-phase region (Fig. B-4). This discontinuity 
is what Hoteit and Firoozabadi (2006) reported in their paper for 
different mixtures. The global minimum should not exhibit this kind 
of discontinuity because the global minimum of D/RT should be 
always zero in a single-phase region.

When the conditions are closer to the critical point, the location 
of the saddle point becomes closer to the trivial solution and the 
degree of discontinuity becomes smaller. Fig. B-5 shows D/RT at a 
temperature of 900°F and a pressure of 377 psia. The outer boundary 
of the shadow-phase region at this temperature is at 376.5 psia. 
When stability analysis is performed for this mixture with a vapor-
like initial estimate, the improved RSA and CSA require 21 and 33 
iterations to decrease max{|Si|} from 10−3 to 10−10, respectively. The 
poor convergence behaviors arise from the existence of the inflection 
point with a very small value of the gradient because it tends to 
attract the values for each subsequent iteration. 

There are several approaches to improve the problem. The 
safest approach would be to take a larger number of SS steps to 
provide a better initial estimate for the Newton method. Another 
approach is to use a global minimization algorithm for the TPD 
function. However, those time-consuming methods would not be 
justified to use in compositional simulation because the standard 
stability analysis using the stationary point method assumes a 
stable single-phase when convergence cannot be achieved within 
a specified number of iterations. Therefore, a practical approach 
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Fig. B-1—Construction of the TPD function for a mixture of 20% 
C1 and 80% n-C20 at 800°F and 690 psia. (a) The dimensionless 
molar Gibbs free energy of mixing. (b) The dimensionless TPD 
function.
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Fig. B-2—Construction of the TPD function for a mixture of 20% 
C1 and 80% n-C20 at 800°F and 633 psia. (a) The dimensionless 
molar Gibbs free energy of mixing. (b) The dimensionless TPD 
function.
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Fig. B-3—Construction of the TPD function for a mixture of 20% 
C1 and 80% n-C20 at 800°F and 575 psia. (a) The dimensionless 
molar Gibbs free energy of mixing. (b) The dimensionless TPD 
function.
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Fig. B-4—Local minimum of D/RT for a mixture of 20% C1 and 
80% n-C20 at 800°F converged by starting with a vapor-like initial 
estimate. There is a discontinuity at 632.7 psia corresponding 
to the outer boundary of the “shadow-phase region.”
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Fig. B-5—Construction of the TPD function for a mixture of 20% 
C1 and 80% n-C20 at 900°F and 377 psia. (a) The dimensionless 
molar Gibbs free energy of mixing. (b) The dimensionless TPD 
function.

for compositional simulation would be simply to stop the iteration 
and assume a stable single phase when the iterations do not 
sufficiently improve the objective function for a few consecutive 
iterations (e.g., five iterations). The procedure of Hoteit and 
Firoozabadi (2006) would be another practical approach. They 
set the maximum number of iterations to be 15 for the reduced 
method, and they assume a stable single phase when convergence 
cannot be achieved within the maximum number of iterations. 

SI Metric Conversion Factors
 cp × 1.0* E−03 = Pa·s
 ft × 3.048 E−01 = m
 °F    (°F−32)/1.8  = °C
 psi × 6.894757 E+00 = kPa

*Conversion factor is exact.
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